Groups of Automorphisms and Chains of Closed Subgroups
Matematičeskie trudy, Tome 4 (2001) no. 2, pp. 128-137
Cet article a éte moissonné depuis la source Math-Net.Ru
The problem is studied of the possibility of representing the automorphism group of a model as the union of an increasing chain of given length consisting of proper subgroups of a certain type (for instance, closed).
@article{MT_2001_4_2_a6,
author = {K. Zh. Kudaibergenov},
title = {Groups of {Automorphisms} and {Chains} of {Closed} {Subgroups}},
journal = {Matemati\v{c}eskie trudy},
pages = {128--137},
year = {2001},
volume = {4},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2001_4_2_a6/}
}
K. Zh. Kudaibergenov. Groups of Automorphisms and Chains of Closed Subgroups. Matematičeskie trudy, Tome 4 (2001) no. 2, pp. 128-137. http://geodesic.mathdoc.fr/item/MT_2001_4_2_a6/
[1] Bhattacharjee M., Macpherson D., Möller R. G., Neumann P. M., Notes on Infinite Permutation Groups, Lecture Notes in Math., 1698, Springer-Verlag, Berlin, etc., 1998 | MR | Zbl
[2] Hodges W., Model Theory, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl
[3] Hodges W., Hodkinson I., Lascar D., Shelah S., “The small index property for $\omega$-stable $\omega$-categorical structures and for the random graph”, J. London Math. Soc. (2), 48 (1993), 204–218 | DOI | MR | Zbl
[4] Macpherson H. D., Neumann P. M., “Subgroups of infinite symmetric groups”, J. London Math. Soc. (2), 42 (1990), 64–84 | DOI | MR | Zbl