Finitely Additive Measures in the~Ergodic Theory of Markov Chains.~I
Matematičeskie trudy, Tome 4 (2001) no. 2, pp. 53-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop a new approach to the study of general Markov chains (MC), i.e. homogeneous Markov processes with discrete time on an arbitrary phase space. We extend the Markov operator from the traditional space of countably additive measures to the space of finitely additive measures. Given an arbitrary phase space, we construct its “gamma-compactification” to which we extend each Markov chain. We establish an isomorphism between the finitely additive Markov chains on the given space and the Feller chains on its “gamma-compactification”. The study is carried out in the framework of the functional operator approach.
@article{MT_2001_4_2_a3,
     author = {A. I. Zhdanok},
     title = {Finitely {Additive} {Measures} in {the~Ergodic} {Theory} of {Markov} {Chains.~I}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {53--95},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2001_4_2_a3/}
}
TY  - JOUR
AU  - A. I. Zhdanok
TI  - Finitely Additive Measures in the~Ergodic Theory of Markov Chains.~I
JO  - Matematičeskie trudy
PY  - 2001
SP  - 53
EP  - 95
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2001_4_2_a3/
LA  - ru
ID  - MT_2001_4_2_a3
ER  - 
%0 Journal Article
%A A. I. Zhdanok
%T Finitely Additive Measures in the~Ergodic Theory of Markov Chains.~I
%J Matematičeskie trudy
%D 2001
%P 53-95
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2001_4_2_a3/
%G ru
%F MT_2001_4_2_a3
A. I. Zhdanok. Finitely Additive Measures in the~Ergodic Theory of Markov Chains.~I. Matematičeskie trudy, Tome 4 (2001) no. 2, pp. 53-95. http://geodesic.mathdoc.fr/item/MT_2001_4_2_a3/

[1] Bebutov M. V., “Tsepi Markova s kompaktnym prostranstvom sostoyanii”, Mat. sb., 10(52):3 (1942), 231–238 | MR | Zbl

[2] Birkgof G., Teoriya struktur, Izd-vo inostr. lit., M., 1952

[3] Borovkov A. A., Ergodichnost i ustoichivost sluchainykh protsessov, Editorial URSS, M., 1999 | MR

[4] Varadarain V. S., “Mery na topologicheskikh prostranstvakh”, Mat. sb., 55:1 (1961), 35–100

[5] Vulikh B. Z., Vvedenie v teoriyu poluuporyadochennykh prostranstv, Fizmatgiz, M., 1961 | MR

[6] Danford N., Shvarts Dzh., Lineinye operatory. Obschaya teoriya, Izd-vo inostr. lit., M., 1962

[7] Zhdanok A. I., “Invariantnye konechno additivnye mery i predelnoe povedenie markovskikh protsessov s diskretnym vremenem”, Dokl. AN USSR. Ser. A, 1981, no. 3, 11–13 | MR | Zbl

[8] Zhdanok A. I., “Ergodicheskie teoremy dlya negladkikh markovskikh protsessov”, Topologicheskie prostranstva i ikh otobrazheniya, LatvGU, Riga, 1981, 18–33 | MR

[9] Zhdanok A. I., “Gelfandovskaya kompaktifikatsiya i dvuznachnye mery”, Topologicheskie prostranstva i ikh otobrazheniya, LatvGU, Riga, 1983, 161–164 | MR

[10] Zhdanok A. I., “Regulyarizatsiya konechno additivnykh mer”, Latv. mat. ezhegodnik, 28, Zinatne, Riga, 1983, 234–248

[11] Zhdanok A. I., Konechno additivnye mery i metod rasshireniya v ergodicheskoi teorii. Raspredelenie na funktsionalnykh strukturakh, Preprint 87.27, In-t matematiki AN USSR, Kiev, 1987, s. 19–37

[12] Kelli Dzh. L., Obschaya topologiya, Nauka, M., 1968

[13] Krein M. G., Rutman M. A., “Lineinye operatory, ostavlyayuschie invariantnym konus v prostranstve Banakha”, Uspekhi mat. nauk, 3:1(23) (1948), 3–95 | MR | Zbl

[14] Nagaev S. V., “Analiticheskii podkhod k tsepyam Markova, vozvratnym po Kharrisu, i otsenka Berri — Essena”, Dokl. RAN, 359:5 (1998), 590–592 | MR | Zbl

[15] Nummelin E., Obschie neprivodimye tsepi Markova i neotritsatelnye operatory, Mir, M., 1989 | MR

[16] Terpe F., Flaksmaier Yu., “O nekotorykh prilozheniyakh teorii rasshirenii topologicheskikh prostranstv i teorii mery”, Uspekhi mat. nauk, 32:5 (1977), 125–162 | MR | Zbl

[17] Khalmosh P., Teoriya mery, Izd-vo inostr. lit., M., 1953 | MR

[18] Shur M. G., “Invariantnye mery dlya tsepei Markova i fellerovskie rasshireniya tsepei Markova”, Teoriya veroyatnostei i ee primeneniya, 26:3 (1981), 496–509 | MR | Zbl

[19] Alexandroff A. D., “Additive set-functions in abstract spaces. I”, Mat. Sb., 8:2 (1940), 307–348 | MR | Zbl

[20] Alexandroff A. D., “Additive set-functions in abstract spaces. II”, Mat. Sb., 9:3 (1941), 563–628 | MR

[21] Alexandroff A. D., “Additive set-functions in abstract spaces. III”, Mat. Sb., 13:2 (1943), 169–238 | MR | Zbl

[22] Bandt C., “On Wallman–Shanin-compactifications”, Math. Nachr., 1977, no. 77, 333–351 | DOI | MR | Zbl

[23] Chen R., “On almost sure convergence in a finitely additive setting”, Z. Wahrsch. Verw. Gebiete., 37:4 (1977), 341–356 | DOI | MR | Zbl

[24] Dubins L. E., Savage L. J., How to Gamble if You Must. Inequalities for Stochastic Processes, McGraw-Hill Book Company, New York, etc, 1965 | MR | Zbl

[25] Foguel S. R., “Existence of invariant measures for Markov processes”, Proc. Amer. Math. Soc., 13:6 (1962), 833–838 | DOI | MR | Zbl

[26] Foguel S. R., “Existence of invariant measures for Markov processes. II”, Proc. Amer. Math. Soc., 17:2 (1966), 387–389 | DOI | MR | Zbl

[27] Foguel S. R., “Positive operators on $C(X)$”, Proc. Amer. Math. Soc., 22:1 (1969), 295–297 | DOI | MR | Zbl

[28] Foguel S. R., The Ergodic Theory of Markov Processes, D. Van Nostrand Company, Inc., Princeton, Toronto, New York, London, 1969 | MR | Zbl

[29] Foguel S. R., “The ergodic theory of positive operators of continuous functions”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 27:1 (1973), 19–51 | MR | Zbl

[30] Purves R., Sudderth W., “Some finitely additive probability”, Ann. Probab., 4:2 (1976), 259–276 | DOI | MR | Zbl

[31] Ramakrishnan S., “Finitely additive Markov chains”, Trans. Amer. Math. Soc., 265 (1981), 247–272 | DOI | MR | Zbl

[32] Ramakrishnan S., “A finitely additive generalization of Birkhoff's ergodic theorem”, Proc. Amer. Math. Soc., 96:2 (1986), 299–305 | DOI | MR | Zbl

[33] Sidak Z., “Integral representations for transition probabilities of Markov chains with a general state space”, Czechoslovak Math. J., 12:4 (1962), 492–522 | MR | Zbl

[34] Yosida K., Hewitt E., “Finitely additive measures”, Trans. Amer. Math. Soc., 72:1 (1952), 46–66 | DOI | MR | Zbl