Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MT_2001_4_2_a3, author = {A. I. Zhdanok}, title = {Finitely {Additive} {Measures} in {the~Ergodic} {Theory} of {Markov} {Chains.~I}}, journal = {Matemati\v{c}eskie trudy}, pages = {53--95}, publisher = {mathdoc}, volume = {4}, number = {2}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MT_2001_4_2_a3/} }
A. I. Zhdanok. Finitely Additive Measures in the~Ergodic Theory of Markov Chains.~I. Matematičeskie trudy, Tome 4 (2001) no. 2, pp. 53-95. http://geodesic.mathdoc.fr/item/MT_2001_4_2_a3/
[1] Bebutov M. V., “Tsepi Markova s kompaktnym prostranstvom sostoyanii”, Mat. sb., 10(52):3 (1942), 231–238 | MR | Zbl
[2] Birkgof G., Teoriya struktur, Izd-vo inostr. lit., M., 1952
[3] Borovkov A. A., Ergodichnost i ustoichivost sluchainykh protsessov, Editorial URSS, M., 1999 | MR
[4] Varadarain V. S., “Mery na topologicheskikh prostranstvakh”, Mat. sb., 55:1 (1961), 35–100
[5] Vulikh B. Z., Vvedenie v teoriyu poluuporyadochennykh prostranstv, Fizmatgiz, M., 1961 | MR
[6] Danford N., Shvarts Dzh., Lineinye operatory. Obschaya teoriya, Izd-vo inostr. lit., M., 1962
[7] Zhdanok A. I., “Invariantnye konechno additivnye mery i predelnoe povedenie markovskikh protsessov s diskretnym vremenem”, Dokl. AN USSR. Ser. A, 1981, no. 3, 11–13 | MR | Zbl
[8] Zhdanok A. I., “Ergodicheskie teoremy dlya negladkikh markovskikh protsessov”, Topologicheskie prostranstva i ikh otobrazheniya, LatvGU, Riga, 1981, 18–33 | MR
[9] Zhdanok A. I., “Gelfandovskaya kompaktifikatsiya i dvuznachnye mery”, Topologicheskie prostranstva i ikh otobrazheniya, LatvGU, Riga, 1983, 161–164 | MR
[10] Zhdanok A. I., “Regulyarizatsiya konechno additivnykh mer”, Latv. mat. ezhegodnik, 28, Zinatne, Riga, 1983, 234–248
[11] Zhdanok A. I., Konechno additivnye mery i metod rasshireniya v ergodicheskoi teorii. Raspredelenie na funktsionalnykh strukturakh, Preprint 87.27, In-t matematiki AN USSR, Kiev, 1987, s. 19–37
[12] Kelli Dzh. L., Obschaya topologiya, Nauka, M., 1968
[13] Krein M. G., Rutman M. A., “Lineinye operatory, ostavlyayuschie invariantnym konus v prostranstve Banakha”, Uspekhi mat. nauk, 3:1(23) (1948), 3–95 | MR | Zbl
[14] Nagaev S. V., “Analiticheskii podkhod k tsepyam Markova, vozvratnym po Kharrisu, i otsenka Berri — Essena”, Dokl. RAN, 359:5 (1998), 590–592 | MR | Zbl
[15] Nummelin E., Obschie neprivodimye tsepi Markova i neotritsatelnye operatory, Mir, M., 1989 | MR
[16] Terpe F., Flaksmaier Yu., “O nekotorykh prilozheniyakh teorii rasshirenii topologicheskikh prostranstv i teorii mery”, Uspekhi mat. nauk, 32:5 (1977), 125–162 | MR | Zbl
[17] Khalmosh P., Teoriya mery, Izd-vo inostr. lit., M., 1953 | MR
[18] Shur M. G., “Invariantnye mery dlya tsepei Markova i fellerovskie rasshireniya tsepei Markova”, Teoriya veroyatnostei i ee primeneniya, 26:3 (1981), 496–509 | MR | Zbl
[19] Alexandroff A. D., “Additive set-functions in abstract spaces. I”, Mat. Sb., 8:2 (1940), 307–348 | MR | Zbl
[20] Alexandroff A. D., “Additive set-functions in abstract spaces. II”, Mat. Sb., 9:3 (1941), 563–628 | MR
[21] Alexandroff A. D., “Additive set-functions in abstract spaces. III”, Mat. Sb., 13:2 (1943), 169–238 | MR | Zbl
[22] Bandt C., “On Wallman–Shanin-compactifications”, Math. Nachr., 1977, no. 77, 333–351 | DOI | MR | Zbl
[23] Chen R., “On almost sure convergence in a finitely additive setting”, Z. Wahrsch. Verw. Gebiete., 37:4 (1977), 341–356 | DOI | MR | Zbl
[24] Dubins L. E., Savage L. J., How to Gamble if You Must. Inequalities for Stochastic Processes, McGraw-Hill Book Company, New York, etc, 1965 | MR | Zbl
[25] Foguel S. R., “Existence of invariant measures for Markov processes”, Proc. Amer. Math. Soc., 13:6 (1962), 833–838 | DOI | MR | Zbl
[26] Foguel S. R., “Existence of invariant measures for Markov processes. II”, Proc. Amer. Math. Soc., 17:2 (1966), 387–389 | DOI | MR | Zbl
[27] Foguel S. R., “Positive operators on $C(X)$”, Proc. Amer. Math. Soc., 22:1 (1969), 295–297 | DOI | MR | Zbl
[28] Foguel S. R., The Ergodic Theory of Markov Processes, D. Van Nostrand Company, Inc., Princeton, Toronto, New York, London, 1969 | MR | Zbl
[29] Foguel S. R., “The ergodic theory of positive operators of continuous functions”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 27:1 (1973), 19–51 | MR | Zbl
[30] Purves R., Sudderth W., “Some finitely additive probability”, Ann. Probab., 4:2 (1976), 259–276 | DOI | MR | Zbl
[31] Ramakrishnan S., “Finitely additive Markov chains”, Trans. Amer. Math. Soc., 265 (1981), 247–272 | DOI | MR | Zbl
[32] Ramakrishnan S., “A finitely additive generalization of Birkhoff's ergodic theorem”, Proc. Amer. Math. Soc., 96:2 (1986), 299–305 | DOI | MR | Zbl
[33] Sidak Z., “Integral representations for transition probabilities of Markov chains with a general state space”, Czechoslovak Math. J., 12:4 (1962), 492–522 | MR | Zbl
[34] Yosida K., Hewitt E., “Finitely additive measures”, Trans. Amer. Math. Soc., 72:1 (1952), 46–66 | DOI | MR | Zbl