Measurable Bundles of Noncommutative $L_p$-Spaces Associated with a~Center-valued Trace
Matematičeskie trudy, Tome 4 (2001) no. 2, pp. 27-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $M$ is a finite von Neumann algebra, $\Phi$ is a faithful normal trace on $M$ with values in the center of $M$, $L_p(M,\Phi)$ is the Banach–Kantorovich space of all measurable operators associated with $M$ and $p$-integrable with respect to $\Phi$, $p\ge 1$. We give a representation of $L_p(M,\Phi)$ as a measurable bundle of noncomutative $L_p$-spaces associated with number traces. We also prove a “pasting” theorem for noncommutative $L_p$-spaces.
@article{MT_2001_4_2_a1,
     author = {I. G. Ganiev and V. I. Chilin},
     title = {Measurable {Bundles} of {Noncommutative} $L_p${-Spaces} {Associated} with {a~Center-valued} {Trace}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {27--41},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2001_4_2_a1/}
}
TY  - JOUR
AU  - I. G. Ganiev
AU  - V. I. Chilin
TI  - Measurable Bundles of Noncommutative $L_p$-Spaces Associated with a~Center-valued Trace
JO  - Matematičeskie trudy
PY  - 2001
SP  - 27
EP  - 41
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2001_4_2_a1/
LA  - ru
ID  - MT_2001_4_2_a1
ER  - 
%0 Journal Article
%A I. G. Ganiev
%A V. I. Chilin
%T Measurable Bundles of Noncommutative $L_p$-Spaces Associated with a~Center-valued Trace
%J Matematičeskie trudy
%D 2001
%P 27-41
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2001_4_2_a1/
%G ru
%F MT_2001_4_2_a1
I. G. Ganiev; V. I. Chilin. Measurable Bundles of Noncommutative $L_p$-Spaces Associated with a~Center-valued Trace. Matematičeskie trudy, Tome 4 (2001) no. 2, pp. 27-41. http://geodesic.mathdoc.fr/item/MT_2001_4_2_a1/

[1] Ganiev I. G., Chilin V. I., “Uporyadochennye $*$-algebroidy Banakha — Kantorovicha”, Uzbekskii mat. zhurn., 4 (1999), 21–25 | MR

[2] Ganiev I. G., “Abstraktnaya kharakterizatsiya nekommutativnykh $L_p$-prostranstv, postroennykh po tsentroznachnomu sledu”, Dokl. AN RUz., 7 (2000), 7–10

[3] Gutman A. E., “O realizatsii reshetochno-normirovannykh prostranstv”, Sib mat. zhurn., 32:2 (1991), 41–54 | MR | Zbl

[4] Gutman A. E., “Banakhovy rassloeniya v teorii reshetochno normirovannykh prostranstv”, Lineinye operatory, soglasovannye s poryadkom, Tr. In-ta matematiki SO RAN, 29, Izd-vo In-ta matematiki, Novosibirsk, 1995, 63–211 | MR

[5] Diksme Zh., $C^*$-algebry i ikh predstavleniya, Nauka, M., 1974 | MR

[6] Kusraev A. G., Vektornaya dvoistvennost i ee prilozheniya, Nauka, Novosibirsk, 1985 | MR | Zbl

[7] Chilin V. I., “Poryadkovaya kharakterizatsiya nekommutativnykh $L_p$-prostranstv”, Teoriya funktsii i ee prilozheniya, Sb. nauchnykh trudov, Izd-vo Kemerovskogo gos. un-ta, Kemerovo, 1985, 19–23 | MR

[8] Chilin V. I., “Chastichno uporyadochennye berovskie algebry”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Noveishie dostizheniya, 27, VINITI, M., 1985, 99–128 | MR

[9] Dixmier J., Les Algèbres d'Opérateurs Band l'Espase Hilbertian (Algèbres de von Neumann), Gauthier-Villars Éditeur, Paris, 1969

[10] Fack Th., Kosaki H., “Generalized $s$-numbers of $\tau$-measurable operators”, Pacific J. Math., 123:2 (1986), 269–300 | MR | Zbl

[11] Stratila S., Zsido L., Lectures on von Neumann Algebras, Abacus Press, Tunbridga Wells; Kent, 1979 | MR | Zbl

[12] Yeadon F. J., “Non-commutative $L_p$-spaces”, Math. Proc. Camb. Philos. Soc., 77 (1975), 91–102 | DOI | MR | Zbl