Measurable Bundles of Noncommutative $L_p$-Spaces Associated with a~Center-valued Trace
Matematičeskie trudy, Tome 4 (2001) no. 2, pp. 27-41

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $M$ is a finite von Neumann algebra, $\Phi$ is a faithful normal trace on $M$ with values in the center of $M$, $L_p(M,\Phi)$ is the Banach–Kantorovich space of all measurable operators associated with $M$ and $p$-integrable with respect to $\Phi$, $p\ge 1$. We give a representation of $L_p(M,\Phi)$ as a measurable bundle of noncomutative $L_p$-spaces associated with number traces. We also prove a “pasting” theorem for noncommutative $L_p$-spaces.
@article{MT_2001_4_2_a1,
     author = {I. G. Ganiev and V. I. Chilin},
     title = {Measurable {Bundles} of {Noncommutative} $L_p${-Spaces} {Associated} with {a~Center-valued} {Trace}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {27--41},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2001_4_2_a1/}
}
TY  - JOUR
AU  - I. G. Ganiev
AU  - V. I. Chilin
TI  - Measurable Bundles of Noncommutative $L_p$-Spaces Associated with a~Center-valued Trace
JO  - Matematičeskie trudy
PY  - 2001
SP  - 27
EP  - 41
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2001_4_2_a1/
LA  - ru
ID  - MT_2001_4_2_a1
ER  - 
%0 Journal Article
%A I. G. Ganiev
%A V. I. Chilin
%T Measurable Bundles of Noncommutative $L_p$-Spaces Associated with a~Center-valued Trace
%J Matematičeskie trudy
%D 2001
%P 27-41
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2001_4_2_a1/
%G ru
%F MT_2001_4_2_a1
I. G. Ganiev; V. I. Chilin. Measurable Bundles of Noncommutative $L_p$-Spaces Associated with a~Center-valued Trace. Matematičeskie trudy, Tome 4 (2001) no. 2, pp. 27-41. http://geodesic.mathdoc.fr/item/MT_2001_4_2_a1/