Large Deviations of Sums of Random Variables of Two Types
Matematičeskie trudy, Tome 4 (2001) no. 2, pp. 3-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi_1,\xi_2,\dots$; $\tau_1,\tau_2,\dots$ be two sequences of independent random variables, with $\xi_i$ and $\tau_i$ distributed respectively as $\xi$ and $\tau$ and with $$ \mathbb{E}|\xi|\infty, \quad \mathbb{E}|\tau|\infty, \quad S_n=\sum_{i=1}^n\xi_i, \quad T_m=\sum_{i=1}^m\tau_i. $$ In this article we study the asymptotics of large deviation probabilities of the sums $T_m+S_n$ for the following three classes of distribution tails for $\tau$ and $\xi$: regular (heavy), semiexponential, and exponentially decreasing. The numbers $m$ and $n$ may be either fixed or unboundedly increasing. The cause for appearance of this article is the articles [1, 2] addressing a particular case of the problem under consideration.
@article{MT_2001_4_2_a0,
     author = {A. A. Borovkov},
     title = {Large {Deviations} of {Sums} of {Random} {Variables} of {Two} {Types}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {3--26},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2001_4_2_a0/}
}
TY  - JOUR
AU  - A. A. Borovkov
TI  - Large Deviations of Sums of Random Variables of Two Types
JO  - Matematičeskie trudy
PY  - 2001
SP  - 3
EP  - 26
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2001_4_2_a0/
LA  - ru
ID  - MT_2001_4_2_a0
ER  - 
%0 Journal Article
%A A. A. Borovkov
%T Large Deviations of Sums of Random Variables of Two Types
%J Matematičeskie trudy
%D 2001
%P 3-26
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2001_4_2_a0/
%G ru
%F MT_2001_4_2_a0
A. A. Borovkov. Large Deviations of Sums of Random Variables of Two Types. Matematičeskie trudy, Tome 4 (2001) no. 2, pp. 3-26. http://geodesic.mathdoc.fr/item/MT_2001_4_2_a0/

[1] Borovkov A. A., Teoriya veroyatnostei, izd. 2-e, Nauka, M., 1986 ; изд. 3-е, Эдиториал УРСС, М., 1999; Изд-во Ин-та математики СО РАН, Новосибирск, 1999 | MR | Zbl

[2] Borovkov A. A., “Otsenki dlya raspredeleniya summ i maksimumov summ sluchainykh velichin pri nevypolnenii usloviya Kramera”, Sib. mat. zhurn., 41:5 (2000), 997–1038 | MR | Zbl

[3] Borovkov A. A., “Veroyatnosti bolshikh uklonenii dlya sluchainykh bluzhdanii s semieksponentsialnymi raspredeleniyami”, Sib. mat. zhurn., 41:6 (2000), 1290–1324 | MR | Zbl

[4] Borovkov A. A., Borovkov K. A., “O veroyatnostyakh bolshikh uklonenii sluchainykh bluzhdanii. I: Raspredeleniya s pravilno menyayuschimisya khvostami”, Teoriya veroyatnostei i ee primeneniya, 46:2 (2001), 1–26 | MR

[5] Borovkov A. A., Mogulskii A. A., Bolshie ukloneniya i proverka statisticheskikh gipotez, Tr. In-ta matematiki SO RAN, 21, Nauka, Novosibirsk, 1992

[6] Borovkov A. A., Mogulskii A. A., “Integro-lokalnye predelnye teoremy dlya summ sluchainykh vektorov, vklyuchayuschie bolshie ukloneniya. I”, Teoriya veroyatnostei i ee primeneniya, 43:1 (1998), 3–17 | MR | Zbl

[7] Borovkov A. A., Utev S. A., “Otsenki dlya raspredelenii summ, ostanovlennykh v markovskii moment vremeni”, Teoriya veroyatnostei i ee primeneniya 1993, 38:2, 259–272 | MR

[8] Volf V., “O veroyatnostyakh bolshikh uklonenii v sluchae narusheniya usloviya Kramera”, Math. Nachr., 70 (1975), 197–215 | DOI | MR

[9] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965

[10] Nagaev S. V., “Nekotorye predelnye teoremy dlya bolshikh uklonenii”, Teoriya veroyatnostei i ee primeneniya, 10:2 (1965), 231–254 | MR | Zbl

[11] Nagaev A. V., “Integralnye predelnye teoremy, vklyuchayuschie bolshie ukloneniya, kogda uslovie Kramera ne vypolneno”, Teoriya veroyatnostei i ee primeneniya, 14:1 (1969), 51–63 | MR | Zbl

[12] Osipov L. V., “O veroyatnostyakh bolshikh uklonenii summ nezavisimykh sluchainykh velichin”, Teoriya veroyatnostei i ee primeneniya, 17:2 (1972), 320–341 | MR | Zbl

[13] Petrov V. V., “Predelnye teoremy dlya bolshikh uklonenii, kogda uslovie Kramera narusheno. I”, Vestnik Leningr. un-ta, 1963, no. 19, 49–68 ; “II”, 1969, No 1, 58–75 | Zbl

[14] Rozovskii L. V., “Veroyatnosti bolshikh uklonenii na vsei osi”, Teoriya veroyatnostei i ee primeneniya, 38:1 (1993), 79–109 | MR | Zbl

[15] Saulis L., Statulyavichus V., Predelnye teoremy o bolshikh ukloneniyakh, Mokslas, Vilnyus, 1989 | MR | Zbl

[16] Asmussen S., Klueppelberg G., Sigman K., “Sampling of subexponential times with queueing applications”, Stochastic Process. Appl., 79:2 (1999), 265–286 | DOI | MR | Zbl

[17] Foss S., Korshunov D., “Sampling at random time with a heavy-tailed distribution”, Markov Process. Related Fields, 6:4 (2000), 543–568 | MR | Zbl

[18] Nagaev S. V., “Large deviations of sums of independent random variables”, Ann. Probab., 7:5 (1979), 745–789 | DOI | MR | Zbl

[19] Wolf W., “Asymptotische Entwicklungen für Wahrscheinlichkeiten grosser Abweichungen”, Z. Wahrsch. Verw. Gebiete., 40 (1977), 239–256 | DOI | MR | Zbl