Large Deviations of Sums of Random Variables of Two Types
Matematičeskie trudy, Tome 4 (2001) no. 2, pp. 3-26

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi_1,\xi_2,\dots$; $\tau_1,\tau_2,\dots$ be two sequences of independent random variables, with $\xi_i$ and $\tau_i$ distributed respectively as $\xi$ and $\tau$ and with $$ \mathbb{E}|\xi|\infty, \quad \mathbb{E}|\tau|\infty, \quad S_n=\sum_{i=1}^n\xi_i, \quad T_m=\sum_{i=1}^m\tau_i. $$ In this article we study the asymptotics of large deviation probabilities of the sums $T_m+S_n$ for the following three classes of distribution tails for $\tau$ and $\xi$: regular (heavy), semiexponential, and exponentially decreasing. The numbers $m$ and $n$ may be either fixed or unboundedly increasing. The cause for appearance of this article is the articles [1, 2] addressing a particular case of the problem under consideration.
@article{MT_2001_4_2_a0,
     author = {A. A. Borovkov},
     title = {Large {Deviations} of {Sums} of {Random} {Variables} of {Two} {Types}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {3--26},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2001_4_2_a0/}
}
TY  - JOUR
AU  - A. A. Borovkov
TI  - Large Deviations of Sums of Random Variables of Two Types
JO  - Matematičeskie trudy
PY  - 2001
SP  - 3
EP  - 26
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2001_4_2_a0/
LA  - ru
ID  - MT_2001_4_2_a0
ER  - 
%0 Journal Article
%A A. A. Borovkov
%T Large Deviations of Sums of Random Variables of Two Types
%J Matematičeskie trudy
%D 2001
%P 3-26
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2001_4_2_a0/
%G ru
%F MT_2001_4_2_a0
A. A. Borovkov. Large Deviations of Sums of Random Variables of Two Types. Matematičeskie trudy, Tome 4 (2001) no. 2, pp. 3-26. http://geodesic.mathdoc.fr/item/MT_2001_4_2_a0/