Large Deviations of Sums of Random Variables of Two Types
Matematičeskie trudy, Tome 4 (2001) no. 2, pp. 3-26
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\xi_1,\xi_2,\dots$; $\tau_1,\tau_2,\dots$ be two sequences of independent random variables, with $\xi_i$
and $\tau_i$ distributed respectively as $\xi$ and $\tau$ and with
$$
\mathbb{E}|\xi|\infty, \quad \mathbb{E}|\tau|\infty, \quad S_n=\sum_{i=1}^n\xi_i, \quad T_m=\sum_{i=1}^m\tau_i.
$$
In this article we study the asymptotics of large deviation probabilities of the sums $T_m+S_n$ for the following three classes of distribution tails for $\tau$ and $\xi$: regular (heavy), semiexponential, and exponentially decreasing. The numbers $m$ and $n$ may be either fixed or unboundedly increasing. The cause for appearance of this article is the articles [1, 2] addressing a particular case of the problem under consideration.
@article{MT_2001_4_2_a0,
author = {A. A. Borovkov},
title = {Large {Deviations} of {Sums} of {Random} {Variables} of {Two} {Types}},
journal = {Matemati\v{c}eskie trudy},
pages = {3--26},
publisher = {mathdoc},
volume = {4},
number = {2},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2001_4_2_a0/}
}
A. A. Borovkov. Large Deviations of Sums of Random Variables of Two Types. Matematičeskie trudy, Tome 4 (2001) no. 2, pp. 3-26. http://geodesic.mathdoc.fr/item/MT_2001_4_2_a0/