On Stability of Totally Controlled Systems
Matematičeskie trudy, Tome 4 (2001) no. 1, pp. 94-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that a smooth control system whose phase space is a smooth manifold $M$ generates some smooth foliation with singularities. This foliation has the property that, for every point $\eta\in M$, the controllability set with goal point $\eta$ is a subset of the leaf passing through $\eta$. In the first part of the article, we obtain sufficient conditions under which a system totally controlled on a fixed leaf is totally controlled on the leaves close to this leaf. In the second part, we consider a control system with a parameter totally controlled for some value of the parameter. We obtain sufficient conditions under which the system is totally controlled for the values of the parameter close to a given value.
@article{MT_2001_4_1_a5,
     author = {A. Ya. Narmanov},
     title = {On {Stability} of {Totally} {Controlled} {Systems}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {94--110},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2001_4_1_a5/}
}
TY  - JOUR
AU  - A. Ya. Narmanov
TI  - On Stability of Totally Controlled Systems
JO  - Matematičeskie trudy
PY  - 2001
SP  - 94
EP  - 110
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2001_4_1_a5/
LA  - ru
ID  - MT_2001_4_1_a5
ER  - 
%0 Journal Article
%A A. Ya. Narmanov
%T On Stability of Totally Controlled Systems
%J Matematičeskie trudy
%D 2001
%P 94-110
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2001_4_1_a5/
%G ru
%F MT_2001_4_1_a5
A. Ya. Narmanov. On Stability of Totally Controlled Systems. Matematičeskie trudy, Tome 4 (2001) no. 1, pp. 94-110. http://geodesic.mathdoc.fr/item/MT_2001_4_1_a5/

[1] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, t. I, Nauka, M., 1981

[2] Lobri K., “Dinamicheskie polisistemy i teoriya upravleniya”, Matematicheskie metody v teorii sistem, Nauka, M., 1979, 134–173

[3] Narmanov A. Ya., “O mnozhestvakh upravlyaemosti sistem upravleniya, yavlyayuschikhsya sloyami sloeniya korazmernosti odin”, Differents. uravneniya, 19:9 (1983), 1627–1629 | MR

[4] Narmanov A. Ya., “O zavisimosti mnozhestva upravlyaemosti ot tselevoi tochki”, Differents. uravneniya, 31:4 (1995), 597–601 | MR | Zbl

[5] Narmanov A. Ya., “O transversalnoi strukture mnozhestva upravlyaemosti simmetrichnykh sistem upravleniya”, Differents. uravneniya, 32:6 (1996), 780–783 | MR | Zbl

[6] Petrov H. H., “Ob upravlyaemosti avtonomnykh sistem”, Differents. uravneniya, 4:4 (1968), 606–617 | MR | Zbl

[7] Petrov H. H., “Nepreryvnost obobschennoi funktsii Bellmana”, Differents. uravneniya, 6:2 (1970), 373–374 | MR | Zbl

[8] Petrov H. H., “O nepreryvnosti funktsii Bellmana po parametru”, Vestnik Leningr. un-ta, 2:7 (1974), 60–67 | Zbl

[9] Petrov H. H., “O lokalnoi upravlyaemosti”, Differents. uravneniya, 12:12 (1976), 2214–2222 | MR | Zbl

[10] Postnikov M. M., Gladkie mnogoobraziya, Nauka, M., 1987 | MR | Zbl

[11] Tamura I., Topologiya sloenii, Mir, M., 1979 | MR | Zbl

[12] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1987

[13] Blumenthal R., Hebda J., “Complementary distributions which preserve the leaf geometry and applications to totally geodesic foliations”, Quart. J. Math. Oxford Ser. (2), 35 (1984), 383–392 | DOI | MR | Zbl

[14] Gauthier J., Bornard G., “An openness condition for the controllability of nonlinear systems”, SIAM J. Control Optim., 20:6 (1982), 808–814 | DOI | MR | Zbl

[15] Grasse K. A., “On accessibility and normal accessibility”, J. Differential Equations, 53 (1984), 387–414 | DOI | MR | Zbl

[16] Grasse K. A., “A condition equivalent to global controllability in systems of vector fields”, J. Differential Equations, 56 (1985), 263–269 | DOI | MR | Zbl

[17] Sussmann H. J., “Orbits of families of vector fields and integrability of distributions”, Trans. Amer. Math. Soc., 180 (1973), 171–183 | DOI | MR

[18] Sussmann H. J., “Some properties of vector field systems that are not altered by small perturbations”, J. Differential Equations, 20 (1976), 292–315 | DOI | MR | Zbl