On Some Algorithmic Problems Related to Varieties of Nonassociative Rings
Matematičeskie trudy, Tome 3 (2000) no. 2, pp. 146-170
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proven that there exists no algorithm deciding whether the variety $\mathrm{var}\Sigma$ is finitely based relative to an arbitrary recursive system of ring identities $\Sigma$. An infinite sequence is constructed of finitely based varieties of nonassociative rings $\mathfrak A_1\supset\mathfrak B_1\supset\mathfrak A_2\supset\mathfrak B_2 \supset\dotsb$ such that, for all $i$, the equational theory of $\mathfrak A_i$ is undecidable and the equational theory of $\mathfrak B_i$ is decidable.
@article{MT_2000_3_2_a5,
author = {V. Yu. Popov},
title = {On {Some} {Algorithmic} {Problems} {Related} to {Varieties} of {Nonassociative} {Rings}},
journal = {Matemati\v{c}eskie trudy},
pages = {146--170},
publisher = {mathdoc},
volume = {3},
number = {2},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2000_3_2_a5/}
}
V. Yu. Popov. On Some Algorithmic Problems Related to Varieties of Nonassociative Rings. Matematičeskie trudy, Tome 3 (2000) no. 2, pp. 146-170. http://geodesic.mathdoc.fr/item/MT_2000_3_2_a5/