Resolvent Estimates for Ordinary Differential Operators of Mixed Type
Matematičeskie trudy, Tome 3 (2000) no. 1, pp. 144-196
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present article, we consider the problem
\begin{equation}
Hu+\lambda u=f(t), \quad t\in (0,1),
\tag{1}
\end{equation}
where $\lambda$ is a complex parameter and $H$ stands for an ordinary differential operator of order $l\ge 2$ defined by the differential expression
$$
Hu=k(t)u^{(l)}(t)+a(t)u^{(l-1)}(t)+\sum_{j=0}^{l-2}a_j(t)u^{(j)}(t),
$$
with $u^{(j)}(t)=\frac{d^ju(t)}{dt^j}$, and the collection of boundary conditions
$$
l_1u=u^{(p)}(1)+\sum_{\nu=0}^{p-1}\alpha_{\nu}u^{(\nu)}(1)=0, \quad l_0u=u^{(q)}(0)+\sum_{\nu=0}^{q-1}\beta_{\nu}u^{(\nu)}(0)=0.
$$
Using a priori bounds, we prove existence and uniqueness theorems of boundary value problems for linear ordinary differential equations and study dependence of solutions on a parameter. The peculiarity of the problem lies in the fact that the leading coefficient in the equation is of an arbitrary sign on the interval $(0,1)$.
@article{MT_2000_3_1_a4,
author = {A. V. Chueshov},
title = {Resolvent {Estimates} for {Ordinary} {Differential} {Operators} of {Mixed} {Type}},
journal = {Matemati\v{c}eskie trudy},
pages = {144--196},
publisher = {mathdoc},
volume = {3},
number = {1},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_2000_3_1_a4/}
}
A. V. Chueshov. Resolvent Estimates for Ordinary Differential Operators of Mixed Type. Matematičeskie trudy, Tome 3 (2000) no. 1, pp. 144-196. http://geodesic.mathdoc.fr/item/MT_2000_3_1_a4/