On the~Geometry of Totally Geodesic Riemannian Foliations
Matematičeskie trudy, Tome 2 (1999) no. 2, pp. 98-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present article we study a totally geodesic Riemannian foliation $F$ on a complete Riemannian manifold. We introduce a metrical connection $\widetilde{\nabla}$ that is different from the Levi–Civita connection. The distribution defined by the foliation $F$ and its orthogonal complement are parallel. We also study an interrelation between the vertical-horizontal homotopy and the metrical connection $\widetilde{\nabla}$. In the article we prove that the complementary (by orthogonality) distribution to the foliation $F$ is completely integrable if and only if the connection $\widetilde{\nabla}$ coincides with the Levi–Civita connection.
@article{MT_1999_2_2_a4,
     author = {A. Ya. Narmanov},
     title = {On {the~Geometry} of {Totally} {Geodesic} {Riemannian} {Foliations}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {98--106},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_1999_2_2_a4/}
}
TY  - JOUR
AU  - A. Ya. Narmanov
TI  - On the~Geometry of Totally Geodesic Riemannian Foliations
JO  - Matematičeskie trudy
PY  - 1999
SP  - 98
EP  - 106
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_1999_2_2_a4/
LA  - ru
ID  - MT_1999_2_2_a4
ER  - 
%0 Journal Article
%A A. Ya. Narmanov
%T On the~Geometry of Totally Geodesic Riemannian Foliations
%J Matematičeskie trudy
%D 1999
%P 98-106
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_1999_2_2_a4/
%G ru
%F MT_1999_2_2_a4
A. Ya. Narmanov. On the~Geometry of Totally Geodesic Riemannian Foliations. Matematičeskie trudy, Tome 2 (1999) no. 2, pp. 98-106. http://geodesic.mathdoc.fr/item/MT_1999_2_2_a4/