Random Walks in the~Positive Quadrant.~I. Local Theorems
Matematičeskie trudy, Tome 2 (1999) no. 2, pp. 57-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article, we consider a two-dimensional random walk $S(n)=S(\gamma,n)$, $n=1,2,\dots$, generated by the sequence of sums $S(\gamma,n)=\gamma+\xi(2)+\dots+\xi(n)$ of independent random vectors $\gamma,\xi(2),\dots,\xi(n),\dots$, with initial random state $\gamma=S(\gamma,1)$; in addition, we assume that the vectors $\xi(i)$, $i=2,3,\dots$, have the same distribution $F$ that differs in general from the distribution ${}\,\overline{\!F}$ of the initial state $\gamma$. We study boundary functionals, in particular, the state of the random walk at the first exit time from the positive quadrant. In the first part of the article, we obtain factorization identities (Theorem 1.1) and as a corollary give a limit theorem for the state $S(\gamma,n)$ of the random walk at the exit time from the positive quadrant under the condition that the value $n$ of this time tends to infinity (Theorem 1.4).
@article{MT_1999_2_2_a3,
     author = {A. A. Mogul'skii and B. A. Rogozin},
     title = {Random {Walks} in {the~Positive} {Quadrant.~I.} {Local} {Theorems}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {57--97},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_1999_2_2_a3/}
}
TY  - JOUR
AU  - A. A. Mogul'skii
AU  - B. A. Rogozin
TI  - Random Walks in the~Positive Quadrant.~I. Local Theorems
JO  - Matematičeskie trudy
PY  - 1999
SP  - 57
EP  - 97
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_1999_2_2_a3/
LA  - ru
ID  - MT_1999_2_2_a3
ER  - 
%0 Journal Article
%A A. A. Mogul'skii
%A B. A. Rogozin
%T Random Walks in the~Positive Quadrant.~I. Local Theorems
%J Matematičeskie trudy
%D 1999
%P 57-97
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_1999_2_2_a3/
%G ru
%F MT_1999_2_2_a3
A. A. Mogul'skii; B. A. Rogozin. Random Walks in the~Positive Quadrant.~I. Local Theorems. Matematičeskie trudy, Tome 2 (1999) no. 2, pp. 57-97. http://geodesic.mathdoc.fr/item/MT_1999_2_2_a3/