An Asymptotic Value of a~Cooperative Game with Infinitely Many Disparate Participants
Matematičeskie trudy, Tome 2 (1999) no. 2, pp. 12-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article, we define the asymptotic value for an infinite cooperative game $v$ associated with an admissible sequence of partitions of the unit segment and a probability measure $\mu$ defined on its Borel $\sigma$-algebra. The function $v$ is assumed to be absolutely continuous relative to $\mu$; moreover (in contrast to standard settings), this measure may have an atomic component. The use of a new variational norm, the polynomial variation of a nonadditive set function, plays a crucial role in defining the class of games with the asymptotic value. The main result of the article consists in establishing simple natural conditions for existence and countable additivity of the values for games of bounded polynomial variation.
@article{MT_1999_2_2_a1,
     author = {G. N. Dyubin},
     title = {An {Asymptotic} {Value} of {a~Cooperative} {Game} with {Infinitely} {Many} {Disparate} {Participants}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {12--20},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_1999_2_2_a1/}
}
TY  - JOUR
AU  - G. N. Dyubin
TI  - An Asymptotic Value of a~Cooperative Game with Infinitely Many Disparate Participants
JO  - Matematičeskie trudy
PY  - 1999
SP  - 12
EP  - 20
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_1999_2_2_a1/
LA  - ru
ID  - MT_1999_2_2_a1
ER  - 
%0 Journal Article
%A G. N. Dyubin
%T An Asymptotic Value of a~Cooperative Game with Infinitely Many Disparate Participants
%J Matematičeskie trudy
%D 1999
%P 12-20
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_1999_2_2_a1/
%G ru
%F MT_1999_2_2_a1
G. N. Dyubin. An Asymptotic Value of a~Cooperative Game with Infinitely Many Disparate Participants. Matematičeskie trudy, Tome 2 (1999) no. 2, pp. 12-20. http://geodesic.mathdoc.fr/item/MT_1999_2_2_a1/