Best Error Bounds for the~Derivative of a~Quartic Interpolation Spline
Matematičeskie trudy, Tome 1 (1998) no. 2, pp. 68-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a quartic $C^2$-spline, G. Howell and A. Varma established the best estimate for an error of interpolation of a smooth function. The article provides an answer to their question on estimating the derivative. We obtain an estimate for the error of approximation to the derivative with a sharp constant.
@article{MT_1998_1_2_a2,
     author = {Yu. S. Volkov},
     title = {Best {Error} {Bounds} for {the~Derivative} of {a~Quartic} {Interpolation} {Spline}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {68--78},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_1998_1_2_a2/}
}
TY  - JOUR
AU  - Yu. S. Volkov
TI  - Best Error Bounds for the~Derivative of a~Quartic Interpolation Spline
JO  - Matematičeskie trudy
PY  - 1998
SP  - 68
EP  - 78
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_1998_1_2_a2/
LA  - ru
ID  - MT_1998_1_2_a2
ER  - 
%0 Journal Article
%A Yu. S. Volkov
%T Best Error Bounds for the~Derivative of a~Quartic Interpolation Spline
%J Matematičeskie trudy
%D 1998
%P 68-78
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_1998_1_2_a2/
%G ru
%F MT_1998_1_2_a2
Yu. S. Volkov. Best Error Bounds for the~Derivative of a~Quartic Interpolation Spline. Matematičeskie trudy, Tome 1 (1998) no. 2, pp. 68-78. http://geodesic.mathdoc.fr/item/MT_1998_1_2_a2/