Best Error Bounds for the~Derivative of a~Quartic Interpolation Spline
Matematičeskie trudy, Tome 1 (1998) no. 2, pp. 68-78
Voir la notice de l'article provenant de la source Math-Net.Ru
For a quartic $C^2$-spline, G. Howell and A. Varma established the best estimate for an error of interpolation of a smooth function. The article provides an answer to their question on estimating the derivative. We obtain an estimate for the error of approximation to the derivative with a sharp constant.
@article{MT_1998_1_2_a2,
author = {Yu. S. Volkov},
title = {Best {Error} {Bounds} for {the~Derivative} of {a~Quartic} {Interpolation} {Spline}},
journal = {Matemati\v{c}eskie trudy},
pages = {68--78},
publisher = {mathdoc},
volume = {1},
number = {2},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MT_1998_1_2_a2/}
}
Yu. S. Volkov. Best Error Bounds for the~Derivative of a~Quartic Interpolation Spline. Matematičeskie trudy, Tome 1 (1998) no. 2, pp. 68-78. http://geodesic.mathdoc.fr/item/MT_1998_1_2_a2/