Further results on neutral consensus functions
Mathématiques informatique et sciences humaines, Tome 132 (1995), pp. 5-11.

Voir la notice de l'article provenant de la source Numdam

We use a set theoretic approach to consensus by viewing an object as a set of smaller pieces called “bricks”. A consensus function is neutral if there exists a family D of sets such that a brick s is in the output of a profile if and only if the set of positions with objects that contain s belongs to D. We give sufficient set theoretic conditions for D to be a lattice filter and, in the case of a finite lattice, these conditions turn out to be necessary. Ourfinal result, which involves a finite distributive join semilattice, provides necessary and sufficient conditions for D to be an ultrafilter.

Nous abordons le problème du consensus par une voie ensembliste, en considérant un objet comme un assemblage de «briques» élémentaires. Une fonction de consensus est neutre s'il existe une famille D d'ensembles telle qu'une brique s appartient au consensus d'un profil si et seulement si l'ensemble des coordonnées des objets contenant s appartient à D. Nous donnons des conditions suffisantes pour que D soit un filtre de treillis. Dans le cas d'un treillis fini, ces conditions s'avèrent être aussi suffisantes. Notre résultat final porte sur le cas d'un sup-demi-treillis distributif fini, dans lequel nous donnons des conditions nécessaires et suffisantes pour que D soit un ultrafiltre.

@article{MSH_1995__132__5_0,
     author = {Crown, G. D. and Janowitz, M.-F. and Powers, R. C.},
     title = {Further results on neutral consensus functions},
     journal = {Math\'ematiques informatique et sciences humaines},
     pages = {5--11},
     publisher = {Ecole des hautes-\'etudes en sciences sociales},
     volume = {132},
     year = {1995},
     mrnumber = {1393629},
     zbl = {0849.90009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MSH_1995__132__5_0/}
}
TY  - JOUR
AU  - Crown, G. D.
AU  - Janowitz, M.-F.
AU  - Powers, R. C.
TI  - Further results on neutral consensus functions
JO  - Mathématiques informatique et sciences humaines
PY  - 1995
SP  - 5
EP  - 11
VL  - 132
PB  - Ecole des hautes-études en sciences sociales
UR  - http://geodesic.mathdoc.fr/item/MSH_1995__132__5_0/
LA  - en
ID  - MSH_1995__132__5_0
ER  - 
%0 Journal Article
%A Crown, G. D.
%A Janowitz, M.-F.
%A Powers, R. C.
%T Further results on neutral consensus functions
%J Mathématiques informatique et sciences humaines
%D 1995
%P 5-11
%V 132
%I Ecole des hautes-études en sciences sociales
%U http://geodesic.mathdoc.fr/item/MSH_1995__132__5_0/
%G en
%F MSH_1995__132__5_0
Crown, G. D.; Janowitz, M.-F.; Powers, R. C. Further results on neutral consensus functions. Mathématiques informatique et sciences humaines, Tome 132 (1995), pp. 5-11. http://geodesic.mathdoc.fr/item/MSH_1995__132__5_0/

M.A. Aizerman, and F.T. Aleskerov (1986) Voting Operators in the Space of Choice Functions, Math. Soc. Sci. 11, 201-242. | Zbl | MR

K.P. Arrow (1962) Social Choice and Individual Values, 2nd edn. Wiley, New York.

J.P. Barthélemy (1982) Arrow's Theorem: Unusual Domain and Extended Codomain, Math. Soc. Sci. 3, 79-89. | Zbl | MR

D.J. Brown (1975) Aggregration of Preferences, Quarterly Journal of Economics, 89, 456-469.

G.D. Crown, M.F. Janowitz and R.C. Powers (1993) Neutral consensus functions, Math. Soc. Sci. 20, 231-250. | Zbl | MR

G.D. Crown, M.F. Janowitz and R.C. Powers (1994) An ordered set approach to neutral consensus functions, in E. Diday et al., New Approaches in Classification and Data Analysis, Berlin, Springer Verlag, 102-110. | MR

B. Leclerc (1984) Efficient and Binary Consensus Functions on Transitively Valued Relations, Math. Soc. Sci. 8, 45-61. | Zbl | MR

B. Leclerc and B. Monjardet (1994) Latticial theory of consensus, in W. A. Bar-nett et al., eds.,Social Choice, Welfare and Ethics, Cambridge University Press, 145-160. | Zbl

B.G. Mirkin (1975) On the Problem of Reconciling Partitions, in Quantitative Sociology, International Perspectives on Mathematical and Statistical Modelling. New York: Academic Press, 441-449. | MR

B. Monjardet (1990) Arrowian characterizations of latticial federation consensus functions, Math. Soc. Sci. 20, 51-71. | Zbl | MR

B. Monjardet (1995) Ordinal Theory of Consensus, R.R. CAMS P.113, Paris, C.A.M.S.