Solutions which are flat or Singular on Totally Characteristic Manifolds of first order Partial Differential Equations
Μαθηματική Επιθεώρηση , Tome 20 (1980), p. 149-158.

Voir la notice de l'article provenant de la source Hellenic Digital Mathematics Library

@article{MR_1980__20_a13,
     author = {E. C. Zachmanoglou},
     title = {Solutions which are flat or {Singular} on {Totally} {Characteristic} {Manifolds} of first order {Partial} {Differential} {Equations}},
     journal = {M\ensuremath{\alpha}\ensuremath{\theta}\ensuremath{\eta}\ensuremath{\mu}\ensuremath{\alpha}\ensuremath{\tau}\ensuremath{\iota}\ensuremath{\kappa}\ensuremath{\acute\eta} E\ensuremath{\pi}\ensuremath{\iota}\ensuremath{\theta}\ensuremath{\varepsilon}\ensuremath{\acute\omega}\ensuremath{\rho}\ensuremath{\eta}\ensuremath{\sigma}\ensuremath{\eta}
},
     pages = {149-158},
     publisher = {mathdoc},
     volume = {20},
     year = {1980},
     language = {gr},
     url = {http://geodesic.mathdoc.fr/item/MR_1980__20_a13/}
}
TY  - JOUR
AU  - E. C. Zachmanoglou
TI  - Solutions which are flat or Singular on Totally Characteristic Manifolds of first order Partial Differential Equations
JO  - Μαθηματική Επιθεώρηση

PY  - 1980
SP  - 149
EP  - 158
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MR_1980__20_a13/
LA  - gr
ID  - MR_1980__20_a13
ER  - 
%0 Journal Article
%A E. C. Zachmanoglou
%T Solutions which are flat or Singular on Totally Characteristic Manifolds of first order Partial Differential Equations
%J Μαθηματική Επιθεώρηση

%D 1980
%P 149-158
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MR_1980__20_a13/
%G gr
%F MR_1980__20_a13
E. C. Zachmanoglou. Solutions which are flat or Singular on Totally Characteristic Manifolds of first order Partial Differential Equations. Μαθηματική Επιθεώρηση
, Tome 20 (1980), p. 149-158. http://geodesic.mathdoc.fr/item/MR_1980__20_a13/