Студенческие олимпиады по геометрии и топологии
Matematicheskoe Prosveshchenie, Matematicheskoe Prosveshchenie (2007), pp. 131-140.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MP_2007_a13,
     author = {A. A. Oshemkov and A. B. Skopenkov},
     title = {{\CYRS}{\cyrt}{\cyru}{\cyrd}{\cyre}{\cyrn}{\cyrch}{\cyre}{\cyrs}{\cyrk}{\cyri}{\cyre} {\cyro}{\cyrl}{\cyri}{\cyrm}{\cyrp}{\cyri}{\cyra}{\cyrd}{\cyrery} {\cyrp}{\cyro} {\cyrg}{\cyre}{\cyro}{\cyrm}{\cyre}{\cyrt}{\cyrr}{\cyri}{\cyri} {\cyri} {\cyrt}{\cyro}{\cyrp}{\cyro}{\cyrl}{\cyro}{\cyrg}{\cyri}{\cyri}},
     journal = {Matematicheskoe Prosveshchenie},
     pages = {131--140},
     publisher = {mathdoc},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MP_2007_a13/}
}
TY  - JOUR
AU  - A. A. Oshemkov
AU  - A. B. Skopenkov
TI  - Студенческие олимпиады по геометрии и топологии
JO  - Matematicheskoe Prosveshchenie
PY  - 2007
SP  - 131
EP  - 140
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MP_2007_a13/
LA  - ru
ID  - MP_2007_a13
ER  - 
%0 Journal Article
%A A. A. Oshemkov
%A A. B. Skopenkov
%T Студенческие олимпиады по геометрии и топологии
%J Matematicheskoe Prosveshchenie
%D 2007
%P 131-140
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MP_2007_a13/
%G ru
%F MP_2007_a13
A. A. Oshemkov; A. B. Skopenkov. Студенческие олимпиады по геометрии и топологии. Matematicheskoe Prosveshchenie, Matematicheskoe Prosveshchenie (2007), pp. 131-140. http://geodesic.mathdoc.fr/item/MP_2007_a13/

[1] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya: metody i prilozheniya, Nauka, M., 1979 | MR

[2] Zorich V. A., Matematicheskii analiz, tom I, MTsNMO, M., 2001; том II, МЦНМО, М., 1998

[3] Ivanov A. O., Tuzhilin A. A., Teoriya ekstremalnykh setei, Institut kompyuternykh issledovanii, M., Izhevsk, 2003

[4] Kolmogorov A. N., Fomin S. V., Funktsionalnyi analiz, Nauka, M., 1976 | MR

[5] Mirzoyan V. A., “Strukturnye teoremy dlya Ric-polusimmetricheskikh podmnogoobrazii i geometricheskoe opisanie odnogo klassa minimalnykh polueinshteinovykh podmnogoobrazii”, Matem. sb., 197:7 (2006), 47–76 | MR

[6] Mischenko A. S., Solovëv Yu. P., Fomenko A. T., Sbornik zadach po differentsialnoi geometrii i topologii, Fizmatlit, M., 2004

[7] Prasolov V. V., Geometriya Lobachevskogo, MTsNMO, M., 1995, 2000, 2004; см. также http://www.mccme.ru/prasolov

[8] Prasolov V. V., Elementy kombinatornoi i differentsialnoi topologii, MTsNMO, M., 2004

[9] Rashevskii P. K., Kurs differentsialnoi geometrii, URSS, M., 2003

[10] Rashevskii P. K., Rimanova geometriya i tenzornyi analiz, URSS, M., 2004

[11] Skopenkov A. B., Algebraicheskaya topologiya s elementarnoi tochki zreniya, http://dfgm.math.msu.su/people/skopenkov/obstruct2.ps

[12] Skopenkov A. B., Osnovy differentsialnoi geometrii v interesnykh zadachakh, http://dfgm.math.msu.su/files/skopenkov/DIFGEOM.ps

[13] Cavicchioli A., Repovš D., Skopenkov A. B., “Open problems on graphs arising from geometric topology”, Topol. Appl., 84 (1998), 207–226 | DOI | MR | Zbl

[14] Repovš D., Skopenkov A. V., Ščepin E. V., “A characterization of $C^1$-homogeneous subsets of the plane”, Boll. Unione Mat. Ital., 7-A (1993), 437–444 | MR | Zbl

[15] Repovš D., Skopenkov A. V., Ščepin E. V., “$C^1$-homogeneous compacta in $R^n$ are $C^1$-submanifolds of $R^n$”, Proc. Amer. Math. Soc., 124:4 (1996), 1219–1226 | DOI | MR | Zbl

[16] Skopenkov A., A characterization of submanifolds by a homogeneity condition, Eprint , 2006 www.arxiv.org/math.GT/0606470