О сумме углов многогранника
Matematicheskoe Prosveshchenie, Matematicheskoe Prosveshchenie (2006), pp. 132-150.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MP_2006_a7,
     author = {I. V. Izmest'ev},
     title = {{\CYRO} {\cyrs}{\cyru}{\cyrm}{\cyrm}{\cyre} {\cyru}{\cyrg}{\cyrl}{\cyro}{\cyrv} {\cyrm}{\cyrn}{\cyro}{\cyrg}{\cyro}{\cyrg}{\cyrr}{\cyra}{\cyrn}{\cyrn}{\cyri}{\cyrk}{\cyra}},
     journal = {Matematicheskoe Prosveshchenie},
     pages = {132--150},
     publisher = {mathdoc},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MP_2006_a7/}
}
TY  - JOUR
AU  - I. V. Izmest'ev
TI  - О сумме углов многогранника
JO  - Matematicheskoe Prosveshchenie
PY  - 2006
SP  - 132
EP  - 150
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MP_2006_a7/
LA  - ru
ID  - MP_2006_a7
ER  - 
%0 Journal Article
%A I. V. Izmest'ev
%T О сумме углов многогранника
%J Matematicheskoe Prosveshchenie
%D 2006
%P 132-150
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MP_2006_a7/
%G ru
%F MP_2006_a7
I. V. Izmest'ev. О сумме углов многогранника. Matematicheskoe Prosveshchenie, Matematicheskoe Prosveshchenie (2006), pp. 132-150. http://geodesic.mathdoc.fr/item/MP_2006_a7/

[1] Alekseevskii D. V., Vinberg E. B., Solodovnikov A. S., “Geometriya prostranstv postoyannoi krivizny”, Geometriya - 2, Itogi nauki i tekhn. Sovr. problemy matem. Fund. napr., 29, VINITI, M., 1988, 5–146

[2] Dehn M., “Die Eulersche Formel im Zusammenhang mit dem Inhalt in der nichteuklidischen Geometrie”, Math. Ann., 61 (1906), 561–586 | DOI | MR

[3] McMullen P., “Non-linear angle-sum relations for polyhedral cones and polytopes”, Math. Proc. Cambridge Philos. Soc., 78:2 (1975), 247–261 | DOI | MR | Zbl

[4] Perles M. A., Shephard G. C., “Angle sums of convex polytopes”, Math. Scand., 21 (1967), 199–218 | MR | Zbl

[5] Prasolov V. V., Tikhomirov V. M., Geometry, Translations of Mathematical Monographs, 200, American Mathematical Society, Providence, RI, 2001 | MR | Zbl

[6] Sommerville D. M. Y., “The relations connecting the angle-sums and volume of a polytope in space of $n$ dimensions”, Proceedings Royal Soc. London, Ser. A, 115 (1927), 103–119 | DOI | Zbl

[7] Shephard G. C., “An elementary proof of Gram's theorem for convex polytopes”, Can. J. Math., 19 (1967), 1214–1217 | MR | Zbl

[8] Ziegler G. M., Lectures on polytopes, Graduate Texts in Mathematics, 152, Springer-Verlag, Berlin, 1995 | MR | Zbl