Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MP_2006_a12, author = {M. N. Vyalyi}, title = {{\CYRO} {\cyrp}{\cyrr}{\cyre}{\cyrd}{\cyrs}{\cyrt}{\cyra}{\cyrv}{\cyrl}{\cyre}{\cyrn}{\cyri}{\cyri} {\cyrch}{\cyri}{\cyrs}{\cyre}{\cyrl} {\cyrv}~{\cyrv}{\cyri}{\cyrd}{\cyre} {\cyrs}{\cyru}{\cyrm}{\cyrm}{\cyrery} {\cyrd}{\cyrv}{\cyru}{\cyrh} {\cyrk}{\cyrv}{\cyra}{\cyrd}{\cyrr}{\cyra}{\cyrt}{\cyro}{\cyrv}}, journal = {Matematicheskoe Prosveshchenie}, pages = {190--194}, publisher = {mathdoc}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MP_2006_a12/} }
M. N. Vyalyi. О представлении чисел в~виде суммы двух квадратов. Matematicheskoe Prosveshchenie, Matematicheskoe Prosveshchenie (2006), pp. 190-194. http://geodesic.mathdoc.fr/item/MP_2006_a12/
[1] Arnold V. I., Tsepnye drobi, Bib-ka Matem. prosv., 14, MTsNMO, M., 2001
[2] Devenport G., Vysshaya arifmetika, Nauka, M., 1965
[3] Butcher J. S., MATHEMATICAL MINIATURE 14: Sums of two squares revisited, www.math.auckland.ac.nz/~butcher/miniature/miniature14.pdf
[4] van der Poorten A. J., “The Hermite–Serret Algorithm and $12^2+33^2$”, Cryptography and Computational Number Theory, Springer-Verlag, 2001, 129–136