Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MP_2005_a21, author = {M. N. Vyalyi}, title = {{\CYRK}{\cyrr}{\cyra}{\cyrt}{\cyrch}{\cyra}{\cyrishrt}{\cyrsh}{\cyri}{\cyre} {\cyrp}{\cyru}{\cyrt}{\cyri} {\cyrp}{\cyro} {\cyrp}{\cyro}{\cyrv}{\cyre}{\cyrr}{\cyrh}{\cyrn}{\cyro}{\cyrs}{\cyrt}{\cyri} {\cyrp}{\cyra}{\cyrr}{\cyra}{\cyrl}{\cyrl}{\cyre}{\cyrl}{\cyre}{\cyrp}{\cyri}{\cyrp}{\cyre}{\cyrd}{\cyra}}, journal = {Matematicheskoe Prosveshchenie}, pages = {203--206}, publisher = {mathdoc}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MP_2005_a21/} }
M. N. Vyalyi. Кратчайшие пути по поверхности параллелепипеда. Matematicheskoe Prosveshchenie, Matematicheskoe Prosveshchenie (2005), pp. 203-206. http://geodesic.mathdoc.fr/item/MP_2005_a21/