Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MP_2005_a20, author = {V. Vikol and A. Apostolov}, title = {{\CYRF}{\cyru}{\cyrn}{\cyrk}{\cyrc}{\cyri}{\cyro}{\cyrn}{\cyra}{\cyrl}{\cyrsftsn}{\cyrn}{\cyrery}{\cyre} {\cyrk}{\cyro}{\cyrr}{\cyrn}{\cyri}}, journal = {Matematicheskoe Prosveshchenie}, pages = {194--202}, publisher = {mathdoc}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MP_2005_a20/} }
V. Vikol; A. Apostolov. Функциональные корни. Matematicheskoe Prosveshchenie, Matematicheskoe Prosveshchenie (2005), pp. 194-202. http://geodesic.mathdoc.fr/item/MP_2005_a20/
[1] Block L., Guckenheimer J., Misiurewicz M., Young L.-S., “Periodic points of one-dimensional maps”, Springer Lecture Notes in Mathematics, 819, Springer-Verlag, Berlin, 1980, 18–34 | MR
[2] Katok A., Hasselblatt B., Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, 1995 | MR | Zbl
[3] Kuczma M., Choczewski V., Ger R., Iterative Functional Equations, Cambridge University Press, 1990 | MR | Zbl
[4] Misiurewicz M., Nitecki Z., Combinatorial Patterns for Maps of the Interval, Mem. Amer. Math. Soc., 456, 1990 | MR
[5] Misiurewicz M., “Formalism for studying periodic orbits of one dimensional maps”, European Conference on Iteration Theory (ECIT 87), World Scientific, Singapore, 1989, 1–7 | MR
[6] Stefan P., “A Theorem of Sharkovski on the Existence of Periodic Orbits of Continous Endomorphism of the Real Line”, Commun. Math. Phys., 54 (1977), 237–248 | DOI | MR | Zbl
[7] Targonski G., Topics in Iteration Theory, Vandenhoeck and Ruprecht, Göttingen, 1981 | MR | Zbl
[8] Targonski G., “Progress of iteration theory since 1981”, Aequationes Math., 50 (1995), 50–72 | DOI | MR | Zbl
[9] Sharkovskii A. N., “Sosuschestvovanie tsiklov nepreryvnogo preobrazovaniya pryamoi v sebya”, Ukr. matem. zh., 16:1 (1964), 61–71 | MR | Zbl
[10] “Odnomernaya dinamika i teorema Markovskogo”, X letnyaya konferentsiya turnira gorodov, MTsNMO, M., 1999, 21–25, 79–91