Вокруг критерия Куратовского планарности графов
Matematicheskoe Prosveshchenie, Matematicheskoe Prosveshchenie (2005), pp. 116-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MP_2005_a14,
     author = {A. B. Skopenkov},
     title = {{\CYRV}{\cyro}{\cyrk}{\cyrr}{\cyru}{\cyrg} {\cyrk}{\cyrr}{\cyri}{\cyrt}{\cyre}{\cyrr}{\cyri}{\cyrya} {{\CYRK}{\cyru}{\cyrr}{\cyra}{\cyrt}{\cyro}{\cyrv}{\cyrs}{\cyrk}{\cyro}{\cyrg}{\cyro}} {\cyrp}{\cyrl}{\cyra}{\cyrn}{\cyra}{\cyrr}{\cyrn}{\cyro}{\cyrs}{\cyrt}{\cyri} {\cyrg}{\cyrr}{\cyra}{\cyrf}{\cyro}{\cyrv}},
     journal = {Matematicheskoe Prosveshchenie},
     pages = {116--128},
     publisher = {mathdoc},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MP_2005_a14/}
}
TY  - JOUR
AU  - A. B. Skopenkov
TI  - Вокруг критерия Куратовского планарности графов
JO  - Matematicheskoe Prosveshchenie
PY  - 2005
SP  - 116
EP  - 128
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MP_2005_a14/
LA  - ru
ID  - MP_2005_a14
ER  - 
%0 Journal Article
%A A. B. Skopenkov
%T Вокруг критерия Куратовского планарности графов
%J Matematicheskoe Prosveshchenie
%D 2005
%P 116-128
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MP_2005_a14/
%G ru
%F MP_2005_a14
A. B. Skopenkov. Вокруг критерия Куратовского планарности графов. Matematicheskoe Prosveshchenie, Matematicheskoe Prosveshchenie (2005), pp. 116-128. http://geodesic.mathdoc.fr/item/MP_2005_a14/

[1] Anosov D. V., Otobrazheniya okruzhnosti, vektornye polya i ikh primeneniya, MTsNMO, M., 2003

[2] Boltyanskii V. G., Efremovich V. A., Naglyadnaya topologiya, Nauka, M., 1982 | Zbl

[3] Kuratovskii K., Topologiya, t. 1, 2, Mir, M., 1969

[4] Matveev S. V., Fomenko A. T., Algoritmicheskie i kompyuternye metody v trekhmernoi topologii, Nauka, M., 1990

[5] Prasolov V. V., Elementy kombinatornoi i differentsialnoi topologii, MTsNMO, M., 2004

[6] Repovsh D., Skopenkov A., “Novye rezultaty o vlozheniyakh poliedrov i mnogoobrazii v evklidovy prostranstva”, UMN, 54:6 (1999), 61–108 | MR | Zbl

[7] Archdeacon D., Huneke P., “A Kuratowski theorem for non-orientable surfaces”, J. Comb. Th., Ser. B, 46 (1989), 173–231 | DOI | MR | Zbl

[8] Claytor S., “Topological immersions of peanian continua in a spherical surface”, Ann. of Math., 35 (1934), 809–835 | DOI | MR | Zbl

[9] Claytor S., “Peanian continua not embeddable in a spherical surface”, Ann. of Math., 38 (1937), 631–646 | DOI | MR | Zbl

[10] Epstein D. B. A., “Curves on 2-manifolds and isotopies”, Acta Math., 115 (1966), 83–107 | DOI | MR | Zbl

[11] Glover H. H., Huneke J. P., Wang C. S., “103 graphs that are irreducible for the projective plane”, J. Comb. Th., 27:3 (1979), 332–370 | DOI | MR | Zbl

[12] Halin R., Jung H. A., “Karakterisierung der Komplexe der Ebene und der 2-Sphare”, Arch. Math., 15 (1964), 466–469 | DOI | MR | Zbl

[13] Kurlin V. A., “Basic embeddings into products of graphs”, Topol. Appl., 102 (2000), 113–137 | DOI | MR | Zbl

[14] Makarychev Yu., “A short proof of Kuratowski's graph planarity criterion”, J. of Graph Theory, 25 (1997), 129–131 | 3.0.CO;2-O class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[15] Mardešić S., Segal J., “$\varepsilon$-mappings and generalized manifolds”, Michigan Math. J., 14 (1967), 171–182 | DOI | MR | Zbl

[16] McLane S., Adkisson V. W., “Extensions of homeomorphisms on the spheres”, Michig. Lect. Topol., Ann Arbor, 1941, 223–230 | MR

[17] Robertson N., Seymour P. D., “Graph minors VIII, A Kuratowski graph theorem for general surfaces”, J. Comb. Theory, ser. B, 48 (1990), 255–288 | DOI | MR | Zbl

[18] Sarkaria K. S., “Kuratowski complexes”, Topology, 30 (1991), 67–76 | DOI | MR | Zbl

[19] Skopenkov A., “A description of continua basically embeddable in $\mathbb R^2$”, Topol. Appl., 65 (1995), 29–48 | DOI | MR | Zbl

[20] Thomassen C., “Kuratowski's theorem”, J. Graph. Theory, 5 (1981), 225–242 | DOI | MR

[21] Whitney H., “Planar graphs”, Fund. Math., 21 (1933), 73–84 | Zbl