Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MP_2004_a18, author = {G. A. Gal'perin}, title = {{\CYRG}{\cyre}{\cyro}{\cyrm}{\cyre}{\cyrt}{\cyrr}{\cyri}{\cyrch}{\cyre}{\cyrs}{\cyrk}{\cyro}{\cyre} {\cyrr}{\cyre}{\cyrsh}{\cyre}{\cyrn}{\cyri}{\cyre} {\cyrp}{\cyrr}{\cyro}{\cyrb}{\cyrl}{\cyre}{\cyrm}{\cyrery} {{\CYRV}.\,{\CYRV}.~{\CYRP}{\cyrr}{\cyro}{\cyri}{\cyrz}{\cyrv}{\cyro}{\cyrl}{\cyro}{\cyrv}{\cyra}}}, journal = {Matematicheskoe Prosveshchenie}, pages = {229--236}, publisher = {mathdoc}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MP_2004_a18/} }
G. A. Gal'perin. Геометрическое решение проблемы В.\,В.~Произволова. Matematicheskoe Prosveshchenie, Matematicheskoe Prosveshchenie (2004), pp. 229-236. http://geodesic.mathdoc.fr/item/MP_2004_a18/
[1] “Usloviya zadach”, Matematicheskoe prosveschenie. Tretya seriya, no. 6, MTsNMO, M., 2002, 133–135 | MR
[2] Pervaya konferentsiya po kombinatornoi geometrii i ee prilozheniyam, tezisy soobschenii, ed. V. G. Boltyanskii, Batumi, 1985
[3] G. A. Galperin, “Reshenie zadachi Proizvolova o pokrytii mnogomernogo mnogogrannika piramidami, i ee obobschenie”, DAN SSSR, 293:2 (1987), 283–288 | MR | Zbl
[4] F. V. Petrov, S. E. Rukshin, “Teoremy o pokryvayuschikh i neperesekayuschikhsya treugolnikakh i ikh obobscheniya”, Matematicheskoe prosveschenie. Tretya seriya, no. 8, 2004, 222–228