Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MP_2004_a13, author = {K. P. Kokhas'}, title = {{\CYRS}{\cyru}{\cyrm}{\cyrm}{\cyra} {\cyro}{\cyrb}{\cyrr}{\cyra}{\cyrt}{\cyrn}{\cyrery}{\cyrh} {\cyrk}{\cyrv}{\cyra}{\cyrd}{\cyrr}{\cyra}{\cyrt}{\cyro}{\cyrv}}, journal = {Matematicheskoe Prosveshchenie}, pages = {142--163}, publisher = {mathdoc}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MP_2004_a13/} }
K. P. Kokhas'. Сумма обратных квадратов. Matematicheskoe Prosveshchenie, Matematicheskoe Prosveshchenie (2004), pp. 142-163. http://geodesic.mathdoc.fr/item/MP_2004_a13/
[1] Aierlend K., Rouzen M., Klassicheskoe vvedenie v sovremennuyu teoriyu chisel, Mir, M., 1987
[2] Evgrafov M. A., Asimptoticheskie otsenki i tselye funktsii, Nauka, M., 1979
[3] Makarov B. M., Goluzina M. G., Lodkin A. A., Podkorytov A. N., Izbrannye zadachi po veschestvennomu analizu, Nauka, M., 1992
[4] Poia D., Matematika i pravdopodobnye rassuzhdeniya, Nauka, M., 1975
[5] Titchmarsh E., Teoriya funktsii, Nauka, M., 1980
[6] Titchmarsh E., Vvedenie v teoriyu integralov Fure, Gostekhizdat, M.-L., 1948
[7] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza, Chast vtoraya, Fizmatlit, M., 1963
[8] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, T. 2, Nevskii Dialekt, SPb, 2002
[9] Khardi G., Raskhodyaschiesya ryady, IL, M., 1951
[10] Yaglom A. M., Yaglom I. M., Neelementarnye zadachi v elementarnom izlozhenii, GITTL, M., 1954
[11] Apostol T. M., “A proof that Eider missid: evaluting $\zeta(2)$”, Math. Intel., 60 (1983) | MR | Zbl
[12] Chapman R., Evaluating $\zeta(2)$, http://www.maths.ex.ac.uk/~rjc/rjc.html
[13] Elkies N., On the sums $\sum\limits_{k=-\infty}^{+\infty}\frac1{(2k+1)^{-n}}$, arxiv.org/math.CA/0101168
[14] Kortram R. A., “Simple proofs for $\sum\limits_{k=1}^\infty\frac1{k^2}=\frac{\pi^2}6$ and $\sin x=x\prod\limits_{k=1}^\infty(1-\frac{x^2}{\pi^2k^2})$”, Math. Mag., 69 (1996), 122–125 | Zbl
[15] Matsuoka Y., “An elementary proof of the formula $\sum\limits_{k=1}^\infty\frac1{k^2}=\frac{\pi^2}6$”, Amer. Math. Monthly, 68 (1961), 486–487 | MR
[16] Russel D., “Another Eulerian-type proof”, Math. Mag., 60 (1991), 349
[17] Stark E. L., “The series $\sum\limits_{k=1}^\infty k^{-s}$, $s=2,3,4,\dots$, once more”, Math. Mag., 47 (1974), 197–202 | MR | Zbl
[18] {\tt newsgroup: sci.math.research}