Прямоугольники на кривой и вложения листа Мёбиуса
Matematicheskoe Prosveshchenie, Matematicheskoe Prosveshchenie (2004), pp. 127-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MP_2004_a12,
     author = {V. V. Prasolov},
     title = {{\CYRP}{\cyrr}{\cyrya}{\cyrm}{\cyro}{\cyru}{\cyrg}{\cyro}{\cyrl}{\cyrsftsn}{\cyrn}{\cyri}{\cyrk}{\cyri} {\cyrn}{\cyra} {\cyrk}{\cyrr}{\cyri}{\cyrv}{\cyro}{\cyrishrt} {\cyri} {\cyrv}{\cyrl}{\cyro}{\cyrzh}{\cyre}{\cyrn}{\cyri}{\cyrya} {\cyrl}{\cyri}{\cyrs}{\cyrt}{\cyra} {{\CYRM}{\cyryo}{\cyrb}{\cyri}{\cyru}{\cyrs}{\cyra}}},
     journal = {Matematicheskoe Prosveshchenie},
     pages = {127--131},
     publisher = {mathdoc},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MP_2004_a12/}
}
TY  - JOUR
AU  - V. V. Prasolov
TI  - Прямоугольники на кривой и вложения листа Мёбиуса
JO  - Matematicheskoe Prosveshchenie
PY  - 2004
SP  - 127
EP  - 131
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MP_2004_a12/
LA  - ru
ID  - MP_2004_a12
ER  - 
%0 Journal Article
%A V. V. Prasolov
%T Прямоугольники на кривой и вложения листа Мёбиуса
%J Matematicheskoe Prosveshchenie
%D 2004
%P 127-131
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MP_2004_a12/
%G ru
%F MP_2004_a12
V. V. Prasolov. Прямоугольники на кривой и вложения листа Мёбиуса. Matematicheskoe Prosveshchenie, Matematicheskoe Prosveshchenie (2004), pp. 127-131. http://geodesic.mathdoc.fr/item/MP_2004_a12/

[1] Prasolov V. V., “Poverkhnost Zeiferta”, Matematicheskoe prosveschenie, Ser. 3, no. 3, 1999, 116–126

[2] Prasolov V. V., Sosinskii A. B., Uzly, zatsepleniya, kosy i trekhmernye mnogoobraziya, MTsNMO, M., 1997

[3] Shnirelman L. G., “O nekotorykh geometricheskikh svoistvakh zamknutykh krivykh”, Uspekhi matematicheskikh nauk, 1944, no. X, 34–44 | MR | Zbl

[4] Conway J. H., Gordon S. MsA., “Knots and links in spatial graphs”, J. Graph Theory, 7 (1983), 445–453 | DOI | MR | Zbl

[5] Krantz S. G., Techniques of problem solving, AMS, 1997 | MR | Zbl

[6] Maehara H., “Why is $P^2$ not embedable in $\mathbb R^3$?”, Amer. Math. Monthly, 100 (1993), 862–864 | DOI | MR | Zbl

[7] Sachs H., “On a spatial analogue of Kuratowski's theorem on planar graphs – an open problem”, Lecture Notes Math., 1018, 1983, 230–241 | MR | Zbl