Вокруг монгольского неравенства
Matematicheskoe Prosveshchenie, Matematicheskoe Prosveshchenie (2003), pp. 149-162.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MP_2003_a12,
     author = {A. I. Khrabrov},
     title = {{\CYRV}{\cyro}{\cyrk}{\cyrr}{\cyru}{\cyrg} {\cyrm}{\cyro}{\cyrn}{\cyrg}{\cyro}{\cyrl}{\cyrsftsn}{\cyrs}{\cyrk}{\cyro}{\cyrg}{\cyro} {\cyrn}{\cyre}{\cyrr}{\cyra}{\cyrv}{\cyre}{\cyrn}{\cyrs}{\cyrt}{\cyrv}{\cyra}},
     journal = {Matematicheskoe Prosveshchenie},
     pages = {149--162},
     publisher = {mathdoc},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MP_2003_a12/}
}
TY  - JOUR
AU  - A. I. Khrabrov
TI  - Вокруг монгольского неравенства
JO  - Matematicheskoe Prosveshchenie
PY  - 2003
SP  - 149
EP  - 162
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MP_2003_a12/
LA  - ru
ID  - MP_2003_a12
ER  - 
%0 Journal Article
%A A. I. Khrabrov
%T Вокруг монгольского неравенства
%J Matematicheskoe Prosveshchenie
%D 2003
%P 149-162
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MP_2003_a12/
%G ru
%F MP_2003_a12
A. I. Khrabrov. Вокруг монгольского неравенства. Matematicheskoe Prosveshchenie, Matematicheskoe Prosveshchenie (2003), pp. 149-162. http://geodesic.mathdoc.fr/item/MP_2003_a12/

[1] Bekkenbakh E., Bellman R., Neravenstva, Mir, M., 1965

[2] Drinfeld V. G., “Ob odnom tsiklicheskom neravenstve”, Mat. zametki, 9:2 (1971), 113–119 | MR | Zbl

[3] Kurlyandchik L., Faibusovich A., “Istoriya odnogo neravenstva”, Kvant, 1991, no. 4, 14–18

[4] Marshall A., Olkin I., Neravenstva: teoriya mazhorizatsii i ee prilozheniya, Mir, M., 1983

[5] Prasolov V. V., Zadachi po planimetrii, Chast 1, Nauka, M., 1991

[6] Prasolov V. V., Mnogochleny, MTsNMO, M., 2000

[7] Khardi G. P., Littlvud D. E., Polia G., Neravenstva, IL, M., 1948

[8] Khrabroe A. I., “Obraschenie klassicheskikh neravenstv”, Zadachi Sankt-Peterburgskoi olimpiady shkolnikov po matematike, 2000 god, Izd-vo SPbGU, 2000, 96–106

[9] Clausing A., “A review of Shapiro's cyclic inequality”, General inequalities, Vol. 6 (Oberwolfach, 1990), Internat. Ser. Numer. Math., 103, Basel, Birkhäuser, 1992, 17–31 | MR

[10] Fink A. M., “Shapiro's inequality”, Recent progress in inequalities (Nis, 1996), Math. Appl., 430, Kluwer Acad. Publ., Dordrecht, 1998, 241–248 | MR | Zbl

[11] Fuchs L., “A new proof of an inequality of Hardy–Littlewood–Pólya”, Mat. Tidsskr. V, 1947, 53–54 | MR | Zbl

[12] Hardy G. H., Littlewood J. E., Pólya G., “Some simple inequalities satisfied by convex function”, Messenger Math., 58 (1928/29), 145–152

[13] Karamata J., “Sur une inégalité relative aux fonctions convexes”, Publ. Math. Univ. Belgrade, 1 (1932), 145–148 | Zbl

[14] Mitrinović D. S., Pečarić J. E., Ciklične nejednakosti i ciklicne funkcionalne jednačine, Matematički Problemi i Ekspozicije, 19, Naučna Knjiga, 1991 | MR | Zbl

[15] Schur I., “Über eine Klasse von Mittelbildungen mit Anwendungen die Determinanten”, Theorie Sitzungsber, Berlin, Math. Gesellschaft, 22 (1923), 9–20 | Zbl

[16] Schweitzer P., “Egy egyenlőtlenség az arithmetikai középértékrol”, Math. és. Phys. Lapok, 23 (1914), 257–261 | Zbl

[17] Shapiro H., “Problem 4603”, Amer. Math. Monthly, 61 (1954), 571–572 | DOI | MR

[18] Szegő G., “Über eine Verallgemeinerung des Dirichlestschen Integrals”, Math. Z., 52 (1950), 676–685 | DOI | MR | Zbl