Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MP_2003_a11, author = {I. M. Pak}, title = {{\CYRO} {\cyrn}{\cyre}{\cyrs}{\cyrk}{\cyro}{\cyrl}{\cyrsftsn}{\cyrk}{\cyri}{\cyrh} {\cyrt}{\cyre}{\cyro}{\cyrr}{\cyre}{\cyrm}{\cyra}{\cyrh} {{\CYRF}{\cyra}{\cyrishrt}{\cyrn}{\cyra},} {\cyro}{\cyrb} {{\CYREREV}{\cyrn}{\cyrd}{\cyrr}{\cyryu}{\cyrs}{\cyre},} {{\CYRD}{\cyra}{\cyrishrt}{\cyrs}{\cyro}{\cyrn}{\cyre}} {\cyri} {\cyro}{\cyrb} {\cyru}{\cyrp}{\cyru}{\cyrshch}{\cyre}{\cyrn}{\cyrn}{\cyrery}{\cyrh} {\cyrv}{\cyro}{\cyrz}{\cyrm}{\cyro}{\cyrzh}{\cyrn}{\cyro}{\cyrs}{\cyrt}{\cyrya}{\cyrh}}, journal = {Matematicheskoe Prosveshchenie}, pages = {136--148}, publisher = {mathdoc}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MP_2003_a11/} }
I. M. Pak. О нескольких теоремах Файна, об Эндрюсе, Дайсоне и об упущенных возможностях. Matematicheskoe Prosveshchenie, Matematicheskoe Prosveshchenie (2003), pp. 136-148. http://geodesic.mathdoc.fr/item/MP_2003_a11/
[1] Andrews G. E., “On basic hypergeometric series, mock theta functions, and partitions (II)”, Quart. J. Math., 17 (1966), 132–143 | DOI | MR | Zbl
[2] Andrews G. E., The theory of partitions, Addison-Wesley, Reading, MA, 1976 ; Endryus G., Teoriya razbienii, Nauka, M., 1982 | MR | Zbl | MR
[3] Andrews G. E., “Ramanujan's “Lost” Notebook. I. Partial $\theta$-functions”, Adv. Math., 41 (1981), 137–172 | DOI | MR | Zbl
[4] Andrews G. E., “On a partition theorem of N. J. Fine”, J. Nat. Acad. Math. India, 1 (1983), 105–107 | MR | Zbl
[5] Andrews G. E., “Use and extension of Frobenius' representation of partitions”, Enumeration and design, Academic Press, Toronto, ON, 1984, 51–65 | MR
[6] Andrews G. E., Predislovie k knige [19], 1988
[7] Andrews G. E., “Some debts I owe”, Sém. Lothar. Combin., 42 (1999), Art. B42a | MR | Zbl
[8] Atkin A. O. L., Swinnerton-Dyer H. P. F., “Some properties of partitions”, Proc. London Math. Soc. (3), 4 (1954), 84–106 | DOI | MR | Zbl
[9] Berkovich A., Garvan F. G., Some observations on Dyson's new symmetries of partitions, Preprint, , 2002 http://www.math.ufl.edu/~frank | MR
[10] Bessenrodt C., “A bijection for Lebesgue's partition identity in spirit of Sylvester”, Discrete Math., 132 (1994), 1–10 | DOI | MR | Zbl
[11] Chapman R., “Franklin's argument proves an identity of Zagier”, El. J. Comb., 7 (2000), RP54 ; R. Chapman, Combinatorial proofs of $g$-series identities, math.CO/0109010 | MR | Zbl
[12] Dyson F. J., “Some guesses in the theory of partitions”, Eureka (Cambridge), 8 (1944), 10–15
[13] Dyson F. J., “Problem 4261”, Amer. Math. Monthly, 54:7 (1947), 418 | DOI | MR
[14] Dyson F. J., “A new symmetry of partitions”, J. Combin. Theory, 7 (1969), 56–61 | DOI | MR | Zbl
[15] Dyson F. J., “Missed opportunities”, Bull. Amer. Math. Soc., 78 (1972), 635–652 ; Daison F., “Upuschennye vozmozhnosti”, UMN, 35:1 (1980), 171–191 | DOI | MR | Zbl | MR | Zbl
[16] Dyson F. J., “A walk through Ramanujan's garden”, Ramanujan revisited, Academic Press, Boston, 1988, 7–28 | MR
[17] Dyson F. J., “Mappings and symmetries of partitions”, J. Combin. Theory Ser. A, 51 (1989), 169–180 | DOI | MR | Zbl
[18] Fine N. J., “Some new results on partitions”, Proc. Nat. Acad. Sci. USA, 34 (1948), 616–618 | DOI | MR | Zbl
[19] Fine N. J., Basic hypergeometric series and applications, Math. Surveys and Monographs, 27, AMS, Providence, 1988 | MR | Zbl
[20] Franklin F., “Sure le developpement du produit infini $(1-x)(1-x^2)(1-x^3)\dots$”, S. R. Acad. Paris Ser. A, 92 (1881), 448–450
[21] Kim D., Yee A. J., “A note on partitions into distinct parts and odd parts”, Ramanujan J., 3 (1999), 227–231 | DOI | MR | Zbl
[22] Knuth D. E., Paterson M. S., “Identities from partition involutions”, Fibonacci Quart., 16 (1978), 198–212 | MR | Zbl
[23] Lehmer D. H., Math. Review, 10, 356d i Errata 10, 856 | MR
[24] Pak L., Postnikov A., “A generalization of Sylvester's identity”, Discrete Math., 178 (1998), 277–281 | DOI | MR | Zbl
[25] Sylvester J. J., “A constructive theory of partitions, arranged in three acts, an interact and exodion”, with insertions by F. Franklin, Amer. J. Math., 5 (1882), 251–330, 334–336 ; The collected mathematical papers of J. J. Sylvester, Vol. 4, Chelsea, New York, 1974, 1–83 | DOI | MR
[26] Watson G. N., “The final problem: An account of the mock theta-functions”, J. London Math. Soc., 11 (1936), 55–80 | DOI | MR | Zbl
[27] Fuks D. B., “O raskrytii skobok, ob Eilere, Gausse, Makdonalds i ob upuschennykh vozmozhnostyakh”, Kvant, 1981, no. 8, 12–20 | MR