Средняя длина пробега в биллиардных системах
Matematicheskoe Prosveshchenie, Matematicheskoe Prosveshchenie (2001), pp. 100-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MP_2001_a6,
     author = {N. I. Chernov},
     title = {{\CYRS}{\cyrr}{\cyre}{\cyrd}{\cyrn}{\cyrya}{\cyrya} {\cyrd}{\cyrl}{\cyri}{\cyrn}{\cyra} {\cyrp}{\cyrr}{\cyro}{\cyrb}{\cyre}{\cyrg}{\cyra} {\cyrv} {\cyrb}{\cyri}{\cyrl}{\cyrl}{\cyri}{\cyra}{\cyrr}{\cyrd}{\cyrn}{\cyrery}{\cyrh} {\cyrs}{\cyri}{\cyrs}{\cyrt}{\cyre}{\cyrm}{\cyra}{\cyrh}},
     journal = {Matematicheskoe Prosveshchenie},
     pages = {100--105},
     publisher = {mathdoc},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MP_2001_a6/}
}
TY  - JOUR
AU  - N. I. Chernov
TI  - Средняя длина пробега в биллиардных системах
JO  - Matematicheskoe Prosveshchenie
PY  - 2001
SP  - 100
EP  - 105
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MP_2001_a6/
LA  - ru
ID  - MP_2001_a6
ER  - 
%0 Journal Article
%A N. I. Chernov
%T Средняя длина пробега в биллиардных системах
%J Matematicheskoe Prosveshchenie
%D 2001
%P 100-105
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MP_2001_a6/
%G ru
%F MP_2001_a6
N. I. Chernov. Средняя длина пробега в биллиардных системах. Matematicheskoe Prosveshchenie, Matematicheskoe Prosveshchenie (2001), pp. 100-105. http://geodesic.mathdoc.fr/item/MP_2001_a6/

[1] Chernov N. I., “Novoe dokazatelstvo formuly Sinaya dlya vychisleniya entropii giperbolicheskikh billiardov. Prilozhenie k gazu Lorentsa i stadionu Bunimovicha”, Funk. analiz i ego pril., 25 (1991), 50–69 | MR | Zbl

[2] Chernov N. I., “Entropy, Lyapunov exponents and mean free path for billiards”, J. Statist. Phys., 88 (1997), 1–29 | DOI | MR | Zbl

[3] Matheron G., Random sets and integral geometry, Wiley Sons, New York, 1975 | MR | Zbl

[4] Santaló L. A., Integral geometry and geometric probability, Addison-Wesley Publ. Co., Reading, Mass, 1976 | MR | Zbl