Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MP_2001_a5, author = {G. A. Gal'perin}, title = {{\CYRB}{\cyri}{\cyrl}{\cyrl}{\cyri}{\cyra}{\cyrr}{\cyrd}{\cyrery} {\cyri} {\cyru}{\cyrp}{\cyrr}{\cyru}{\cyrg}{\cyri}{\cyre} {\cyrs}{\cyrt}{\cyro}{\cyrl}{\cyrk}{\cyrn}{\cyro}{\cyrv}{\cyre}{\cyrn}{\cyri}{\cyrya} {\cyrch}{\cyra}{\cyrs}{\cyrt}{\cyri}{\cyrc} {\cyri} {\cyrsh}{\cyra}{\cyrr}{\cyro}{\cyrv}}, journal = {Matematicheskoe Prosveshchenie}, pages = {65--99}, publisher = {mathdoc}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MP_2001_a5/} }
G. A. Gal'perin. Биллиарды и упругие столкновения частиц и шаров. Matematicheskoe Prosveshchenie, Matematicheskoe Prosveshchenie (2001), pp. 65-99. http://geodesic.mathdoc.fr/item/MP_2001_a5/
[1] Galperin G. A., “Uprugie stolknoveniya chastits na pryamoi”, UMN, 33:1 (1978), 211–212 | MR | Zbl
[2] Galperin G. A., “O sistemakh lokalno vzaimodeistvuyuschikh i ottalkivayuschikhsya chastits, dvizhuschikhsya v prostranstve”, Trudy Moskovskogo Matematicheskogo Obschestva, 43, MGU, M., 1981, 142–196
[3] Galperin G. A., Zemlyakov A. N., Matematicheskie billiardy, Nauka, M., 1990
[4] Galperin G. A., Chernov N. I., Billirady i khaos, Seriya «Matematika, kibernetika», no. 5, Znanie, M., 1991
[5] Zemlyakov A. N., “Geometriya i arifmetika stolknovenii”, Kvant, 1978, no. 4, 14–21 | MR
[6] Polak L. S., Lyudvig Boltsman (1844–1906), Nauka, M., 1987
[7] Sevryuk M. B., K otsenke chisla stolknovenii $n$ uprugikh chastits na pryamoi, Institut energeticheskikh problem khim. fiziki RAN, 1992
[8] Sinai Ya. G., “Dinamicheskie sistemy s uprugimi otrazheniyami. Ergodicheskie svoistva rasseivayuschikh billiardov”, UMN, 25:2 (1970), 141–192 | MR | Zbl
[9] Sinai Ya. G., Ravnomernaya verkhnyaya otsenka dlya chisla uprugikh udarov v sisteme odinakovykh tverdykh sharov v prostranstve, Rukopis, 1965
[10] Sinai Ya. G., “Billiardnye traektorii v mnogogrannom ugle”, UMN, 33:1 (1978), 229–230 | MR | Zbl
[11] Khovanskii A. N., Prilozheniya tsepnykh drobei i ikh obobschenii k voprosam priblizhennogo analiza, Mir, M., 1956
[12] Burago D., Kanonenko A., Ferleger S., “Uniform estimates on the number of collisions in semi-dispersing billiards”, Annals of Mathematics, 147 (1998), 695–708 | DOI | MR | Zbl
[13] Burago D., Kanonenko A., Ferleger S., “A geometric approach to semi-dispersing billiards”, Ergodic Th. Dyn. Syst., 18 (1998), 303–319 | DOI | MR | Zbl
[14] Cohen E. G. D., Lectures in Theoretical Physics, VIII A, Univ. of Colorado Press, 1966
[15] Illner R., “Finiteness of the number of collisions in a hard sphere particle systems in all space”, Transport Theory Statist. Physics, 19 (1990), 573–579 | DOI | MR | Zbl
[16] Murphy T. J., Cohen E. G. D., “Maximum number of collisions among identical hard spheres”, J. Stat. Physics, 71 (1993), 1063–1080 | DOI | MR | Zbl
[17] Rehacek J., “On the ergodicity of dispersing billiards”, Random Computational Dymamics, 3:12 (1995), 35–55 | MR | Zbl
[18] Sandri G., Sullivan R. D., Norem P., “Collisions of three hard spheres”, Physical Review Letters, 13:25 (1964), 743–745 | DOI | Zbl
[19] Turston W., Sandri G., “Classical hard sphere 3-body problem”, Bull. Amer. Phys. Soc., 9 (1964), 386
[20] Vaserstein L. N., “On systems of particles with finite-range and/or repulsive interactions”, Comm. Math. Physics, 69 (1979), 31–56 | DOI | MR