Доказательство квадратичного закона взаимности по Золотареву
Matematicheskoe Prosveshchenie, Matematicheskoe Prosveshchenie (2000), pp. 140-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MP_2000_a8,
     author = {V. V. Prasolov},
     title = {{\CYRD}{\cyro}{\cyrk}{\cyra}{\cyrz}{\cyra}{\cyrt}{\cyre}{\cyrl}{\cyrsftsn}{\cyrs}{\cyrt}{\cyrv}{\cyro} {\cyrk}{\cyrv}{\cyra}{\cyrd}{\cyrr}{\cyra}{\cyrt}{\cyri}{\cyrch}{\cyrn}{\cyro}{\cyrg}{\cyro} {\cyrz}{\cyra}{\cyrk}{\cyro}{\cyrn}{\cyra} {\cyrv}{\cyrz}{\cyra}{\cyri}{\cyrm}{\cyrn}{\cyro}{\cyrs}{\cyrt}{\cyri} {\cyrp}{\cyro} {{\CYRZ}{\cyro}{\cyrl}{\cyro}{\cyrt}{\cyra}{\cyrr}{\cyre}{\cyrv}{\cyru}}},
     journal = {Matematicheskoe Prosveshchenie},
     pages = {140--144},
     publisher = {mathdoc},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MP_2000_a8/}
}
TY  - JOUR
AU  - V. V. Prasolov
TI  - Доказательство квадратичного закона взаимности по Золотареву
JO  - Matematicheskoe Prosveshchenie
PY  - 2000
SP  - 140
EP  - 144
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MP_2000_a8/
LA  - ru
ID  - MP_2000_a8
ER  - 
%0 Journal Article
%A V. V. Prasolov
%T Доказательство квадратичного закона взаимности по Золотареву
%J Matematicheskoe Prosveshchenie
%D 2000
%P 140-144
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MP_2000_a8/
%G ru
%F MP_2000_a8
V. V. Prasolov. Доказательство квадратичного закона взаимности по Золотареву. Matematicheskoe Prosveshchenie, Matematicheskoe Prosveshchenie (2000), pp. 140-144. http://geodesic.mathdoc.fr/item/MP_2000_a8/

[1] Brenner J. L., “Zolotarev's theorem on the Legendre symbol”, Pacific J. Math., 45 (1973), 413–414 | MR | Zbl

[2] Cartier P., “Sur unegénéralization des symboles de Legendre–Jacobi”, L'Ens. Math., 16 (1970), 31–48 | Zbl

[3] Dressler R. E., Shult E. E., “A simple proof of the Zolotareff–Frobenius theorem”, Proc. Amer. Math. Soc., 54 (1975), 53–54 | DOI | MR

[4] Frobenius G., “Über das quadratische Reziprozitätsgesetz, I”, Berl. Ber., 1914, 335–349 | Zbl

[5] Lehmer D. H., “The characters of linear permutations”, Linear and Multilinear Algebra, 4 (1976), 1–16 | DOI | MR | Zbl

[6] Lerch M., “Sur un théorème arithmetique de Zolotarev”, C̆eska Acad., Bull. Int. Cl. Math., 3 (1986), 34–37

[7] Morton P., “A generalization of Zolotarev's theorem”, Amer. Math. Monthly, 86 (1979), 374–376 | DOI | MR

[8] Riesz M., “Sur le lemme de Zolotareff et sur la loi de réciprocité des restes quadratiques”, Math. Scand., 1 (1953), 159–169 | MR | Zbl

[9] Rousseau G., “Exterior algebras and the quadratic reciprocity law”, L'Ens. Math., 36 (1990), 303–308 | MR | Zbl

[10] Rousseau G., “On the quadratic reciprocity law”, J. Austral. Math. Soc. (Series A), 51 (1991), 423–425 | DOI | MR | Zbl

[11] Rousseau G., “On the Jacobi symbol”, J. Number Theory, 48 (1994), 109–111 | DOI | MR | Zbl

[12] Zolotareff G., “Nouvelle démonstration de la loi de réciprocité de Legendre”, Nouv. Ann. Math. (2), 11 (1872), 354–362