Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MP_2000_a7, author = {A. N. Rudakov}, title = {{\CYRCH}{\cyri}{\cyrs}{\cyrl}{\cyra} {{\CYRF}{\cyri}{\cyrb}{\cyro}{\cyrn}{\cyra}{\cyrch}{\cyrch}{\cyri}} {\cyri} {\cyrp}{\cyrr}{\cyro}{\cyrs}{\cyrt}{\cyro}{\cyrt}{\cyra} {\cyrch}{\cyri}{\cyrs}{\cyrl}{\cyra} $2^{127}-1$}, journal = {Matematicheskoe Prosveshchenie}, pages = {127--139}, publisher = {mathdoc}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MP_2000_a7/} }
A. N. Rudakov. Числа Фибоначчи и простота числа $2^{127}-1$. Matematicheskoe Prosveshchenie, Matematicheskoe Prosveshchenie (2000), pp. 127-139. http://geodesic.mathdoc.fr/item/MP_2000_a7/
[1] Bruce J. W., “A really trivial proof of the Lucas–Lehmer test”, Amer. Math. Monthly, 100 (1993), 370–371 | DOI | MR | Zbl
[2] Rosen M. I., “A proof of the Lucas–Lehmer test”, Amer. Math. Monthly, 95 (1988), 855–856 | DOI | MR | Zbl
[3] Williams H. C., Édouard Lucas and primality testing, Canadian Math. Soc. Monographs, 22, Wiley-Interscience Publications, 1998 | MR | Zbl