Числа Фибоначчи и простота числа $2^{127}-1$
Matematicheskoe Prosveshchenie, Matematicheskoe Prosveshchenie (2000), pp. 127-139.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MP_2000_a7,
     author = {A. N. Rudakov},
     title = {{\CYRCH}{\cyri}{\cyrs}{\cyrl}{\cyra} {{\CYRF}{\cyri}{\cyrb}{\cyro}{\cyrn}{\cyra}{\cyrch}{\cyrch}{\cyri}} {\cyri} {\cyrp}{\cyrr}{\cyro}{\cyrs}{\cyrt}{\cyro}{\cyrt}{\cyra} {\cyrch}{\cyri}{\cyrs}{\cyrl}{\cyra} $2^{127}-1$},
     journal = {Matematicheskoe Prosveshchenie},
     pages = {127--139},
     publisher = {mathdoc},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MP_2000_a7/}
}
TY  - JOUR
AU  - A. N. Rudakov
TI  - Числа Фибоначчи и простота числа $2^{127}-1$
JO  - Matematicheskoe Prosveshchenie
PY  - 2000
SP  - 127
EP  - 139
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MP_2000_a7/
LA  - ru
ID  - MP_2000_a7
ER  - 
%0 Journal Article
%A A. N. Rudakov
%T Числа Фибоначчи и простота числа $2^{127}-1$
%J Matematicheskoe Prosveshchenie
%D 2000
%P 127-139
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MP_2000_a7/
%G ru
%F MP_2000_a7
A. N. Rudakov. Числа Фибоначчи и простота числа $2^{127}-1$. Matematicheskoe Prosveshchenie, Matematicheskoe Prosveshchenie (2000), pp. 127-139. http://geodesic.mathdoc.fr/item/MP_2000_a7/

[1] Bruce J. W., “A really trivial proof of the Lucas–Lehmer test”, Amer. Math. Monthly, 100 (1993), 370–371 | DOI | MR | Zbl

[2] Rosen M. I., “A proof of the Lucas–Lehmer test”, Amer. Math. Monthly, 95 (1988), 855–856 | DOI | MR | Zbl

[3] Williams H. C., Édouard Lucas and primality testing, Canadian Math. Soc. Monographs, 22, Wiley-Interscience Publications, 1998 | MR | Zbl