Теория препятствий для начинающих
Matematicheskoe Prosveshchenie, Matematicheskoe Prosveshchenie (2000), pp. 154-180.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MP_2000_a10,
     author = {D. Repov\v{s} and A. B. Skopenkov},
     title = {{\CYRT}{\cyre}{\cyro}{\cyrr}{\cyri}{\cyrya} {\cyrp}{\cyrr}{\cyre}{\cyrp}{\cyrya}{\cyrt}{\cyrs}{\cyrt}{\cyrv}{\cyri}{\cyrishrt} {\cyrd}{\cyrl}{\cyrya} {\cyrn}{\cyra}{\cyrch}{\cyri}{\cyrn}{\cyra}{\cyryu}{\cyrshch}{\cyri}{\cyrh}},
     journal = {Matematicheskoe Prosveshchenie},
     pages = {154--180},
     publisher = {mathdoc},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MP_2000_a10/}
}
TY  - JOUR
AU  - D. Repovš
AU  - A. B. Skopenkov
TI  - Теория препятствий для начинающих
JO  - Matematicheskoe Prosveshchenie
PY  - 2000
SP  - 154
EP  - 180
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MP_2000_a10/
LA  - ru
ID  - MP_2000_a10
ER  - 
%0 Journal Article
%A D. Repovš
%A A. B. Skopenkov
%T Теория препятствий для начинающих
%J Matematicheskoe Prosveshchenie
%D 2000
%P 154-180
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MP_2000_a10/
%G ru
%F MP_2000_a10
D. Repovš; A. B. Skopenkov. Теория препятствий для начинающих. Matematicheskoe Prosveshchenie, Matematicheskoe Prosveshchenie (2000), pp. 154-180. http://geodesic.mathdoc.fr/item/MP_2000_a10/

[1] Akhmetiev P., Repovš D., Skopenkov A., “Obstructions to approximating maps of $n$-surfaces in $\mathbb R^{2n}$ by embeddings”, Topol. Appl., 123:1 (2002), 3–14 | DOI | MR | Zbl

[2] Boltyanskii V. G. i Efremovich V. A., Naglyadnaya topologiya, Nauka, M., 1982 | MR | Zbl

[3] Cavicchioli A., Repovš D., Skopenkov A. B., “Open problems on graphs, arising from geometric topology”, Topol. Appl., 84 (1998), 207–226 | DOI | MR | Zbl

[4] Freedman M. H., Krushkal V. S., Teichner P., “Van Kampen's embedding obstruction is incomplete for 2-complexes in $\mathbb R^4$”, Math. Res. Letters, 1 (1994), 167–176 | MR | Zbl

[5] Fomenko A. F., Fuks D. B., Kurs gomotopicheskoi topologii, Nauka, M., 1989 | MR

[6] van Kampen E. R., “Komplexe in Euclidische Raumen”, Abb. Math. Sem. Hamburg, 9 (1932), 72–78 ; Berichtigung dazu 152–153 | Zbl

[7] Makarychev Yu., “A short proof of Kuratowski's graph planarity criterion”, J. of Graph Theory, 25 (1997), 129–131 | 3.0.CO;2-O class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[8] Minc P., “Embedding of simplicial arcs into the plane”, Topology Proc., 22 (1997), 305–340 | MR | Zbl

[9] Repovš D., Skopenkov A. B., “Embeddability and isotopy of polyhedra in Euclidean spaces”, Trudy Matem. Inst. RAN, 212, 1996, 173–187 | MR | Zbl

[10] Repovš D., Skopenkov A. B., “A deleted product criterion for approximability of a map by embeddings”, Topol. Appl., 87 (1998), 1–19 | DOI | MR | Zbl

[11] Repovsh D., Skopenkov A., “Novye rezultaty o vlozhimosti poliedrov i mnogoobrazii v evklidovy prostranstva”, UMN, 54:6 (1999), 61–108 | MR | Zbl

[12] Repovsh D., Skopenkov A., “Koltsa Borromeo i prepyatstviya k vlozhimosti”, Trudy Matem. Inst. RAN, 225, 1999, 331–338 | MR | Zbl

[13] Sarkaria K. S., “A one-dimensional Whitney trick and Kuratowski's graph planarity criterion”, Israel J. Math., 73 (1991), 79–89 | DOI | MR | Zbl

[14] Sieklucki K., “Realization of mappings”, Fund. Math., 65 (1969), 325–343 | MR | Zbl

[15] Skopenkov M., A criterion for approximability by embeddings of PL maps $S^1\to\mathbb R^2$, Preprint, 1999