Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MP_1999_a14, author = {A. B. Skopenkov}, title = {$n$-{\cyrm}{\cyre}{\cyrr}{\cyrn}{\cyrery}{\cyrishrt} {\cyrk}{\cyru}{\cyrb}, {\cyrm}{\cyrn}{\cyro}{\cyrg}{\cyro}{\cyrch}{\cyrl}{\cyre}{\cyrn}{\cyrery} {\cyri} {\cyrr}{\cyre}{\cyrsh}{\cyre}{\cyrn}{\cyri}{\cyre} {\cyrp}{\cyrr}{\cyro}{\cyrb}{\cyrl}{\cyre}{\cyrm}{\cyrery} {{\CYRB}{\cyro}{\cyrr}{\cyrs}{\cyru}{\cyrk}{\cyra}}}, journal = {Matematicheskoe Prosveshchenie}, pages = {184--188}, publisher = {mathdoc}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MP_1999_a14/} }
A. B. Skopenkov. $n$-мерный куб, многочлены и решение проблемы Борсука. Matematicheskoe Prosveshchenie, Matematicheskoe Prosveshchenie (1999), pp. 184-188. http://geodesic.mathdoc.fr/item/MP_1999_a14/
[1] Boltyanskii V. B., Bokhberg I. Ts., Teoremy i zadachi kombinatornoi geometrii, Nauka, M., 1965
[2] K. Borsuk, Fund. Math., 20 (1933), 177–190 | Zbl
[3] P. Frankl, R. Wilson, Combinatorica, 1 (1981), 259–286 | DOI | MR
[4] M. L. Berver, Matematicheskoe Prosveschenie, ser. 3, no. 3, MTsNMO, M., 1999, 168–183
[5] Kahn J., Kalai G., Bull. AMS (N. S.), 29:1 (1993), 60–62 | DOI | MR | Zbl
[6] Nilli A., Contemp. Math., 178 (1994), 209–210 | MR | Zbl
[7] Raigorodskii A., UMN, 52:6 (1997), 181–182 | MR | Zbl
[8] A. Skopenkov, Quantum, 7:1 (1996), 16–21, 63 | MR