Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MP_1998_a12, author = {A. R. Alimov}, title = {{\CYRV}{\cyrs}{\cyrya}{\cyrk}{\cyro}{\cyre} {\cyrl}{\cyri} {\cyrch}{\cyre}{\cyrb}{\cyrery}{\cyrsh}{\cyre}{\cyrv}{\cyrs}{\cyrk}{\cyro}{\cyre} {\cyrm}{\cyrn}{\cyro}{\cyrzh}{\cyre}{\cyrs}{\cyrt}{\cyrv}{\cyro} {\cyrv}{\cyrery}{\cyrp}{\cyru}{\cyrk}{\cyrl}{\cyro}?}, journal = {Matematicheskoe Prosveshchenie}, pages = {155--172}, publisher = {mathdoc}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MP_1998_a12/} }
A. R. Alimov. Всякое ли чебышевское множество выпукло?. Matematicheskoe Prosveshchenie, Matematicheskoe Prosveshchenie (1998), pp. 155-172. http://geodesic.mathdoc.fr/item/MP_1998_a12/
[1] Asplund E., “Cebysev sets in Hilbert space”, Trans. Amer. Math. Soc., 144 (1969), 235–240 | DOI | MR | Zbl
[2] Balaganskii B. C., Vlasov L. P., “Problema vypuklosti chebyshëvskikh mnozhestv”, UMN, 51:6 (1996), 125–188 | MR | Zbl
[3] Vlasov L. P., “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, UMN, 28:6 (1973), 3–66 | MR | Zbl
[4] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985 | MR
[5] Lyusternik L. A., Sobolev S. A., Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR | Zbl
[6] Smart D. R., Fixed Point Theorems, Cambridge Tracts in Mathematics, 66, Cambridge, 1974 | MR | Zbl
[7] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976 | MR
[8] Webster R., Convexity, Oxford, 1994 | MR
[9] Tsarkov I. G., “Ogranichennye chebyshëvskie mnozhestva v banakhovykh prostranstvakh”, Matem. zametki, 36:1 (1984), 73–87 | MR | Zbl