Types of random processes associated with a complex event. Practical applications
Matematičeskoe obrazovanie, Tome 113 (2025) no. 1, pp. 57-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is devoted to the theory of random processes with the representation of simple mathematical models, which are important for practical applications, in which various processes occurring over time under the influence of certain random factors are considered. The models under consideration are chosen so that various methods of the theory of random processes can be shown by their example. The article can be used in the educational process by teachers and graduate students.
@article{MO_2025_113_1_a5,
     author = {N. I. Sidnyaev and E. Battulga},
     title = {Types of random processes associated with a complex event. {Practical} applications},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {57--68},
     publisher = {mathdoc},
     volume = {113},
     number = {1},
     year = {2025},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2025_113_1_a5/}
}
TY  - JOUR
AU  - N. I. Sidnyaev
AU  - E. Battulga
TI  - Types of random processes associated with a complex event. Practical applications
JO  - Matematičeskoe obrazovanie
PY  - 2025
SP  - 57
EP  - 68
VL  - 113
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2025_113_1_a5/
LA  - ru
ID  - MO_2025_113_1_a5
ER  - 
%0 Journal Article
%A N. I. Sidnyaev
%A E. Battulga
%T Types of random processes associated with a complex event. Practical applications
%J Matematičeskoe obrazovanie
%D 2025
%P 57-68
%V 113
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2025_113_1_a5/
%G ru
%F MO_2025_113_1_a5
N. I. Sidnyaev; E. Battulga. Types of random processes associated with a complex event. Practical applications. Matematičeskoe obrazovanie, Tome 113 (2025) no. 1, pp. 57-68. http://geodesic.mathdoc.fr/item/MO_2025_113_1_a5/

[1] N. I. Sidnyaev, Logiko-statisticheskii analiz problem planirovaniya eksperimenta, Izd-vo MGTU im. N.E. Baumana, M., 2022, 352 pp.

[2] S. Ya. Serovaiskii, Istoriya matematiki: Evolyutsiya matematicheskikh idei: Vychislitelnaya matematika. Teoriya veroyatnostei. Informatika. Matematicheskaya logika, Lenand, M., 2019, 240 pp., URL:; R. E. Schwartz, 2018, arXiv: <ext-link ext-link-type='uri' href='https://arxiv.org/abs/1001.3702v5'>1001.3702v5 [math.H0]</ext-link>

[3] B. S. Gorobets, Teoriya veroyatnostei, matematicheskaya statistika i elementy sluchainykh protsessov. Uproschennyi kurs, Editorial URSS, M., 2020, 232 pp.

[4] N. Yu. Enatskaya, E. R. Khakimullin, Teoriya veroyatnostei i matematicheskaya statistika dlya inzhenerno-tekhnicheskikh napravlenii, Uchebnik i praktikum dlya prikladnogo bakalavriata, Yurait, Lyubertsy, 2016, 399 pp.

[5] R. I. Ivanovskii, Teoriya veroyatnostei i matematicheskaya statistika. Osnovy, prikladnye aspekty s primerami i zadachami, BHV, SPb, 2012, 528 pp.

[6] S. M. Prigarin, Statisticheskoe modelirovanie mnogomernykh gaussovskikh raspredelenii, Uchebnoe posobie dlya vuzov, Yurait, M., 2019, 84 pp.

[7] V. D. Myatlev, Teoriya veroyatnostei i matematicheskaya statistika. Matematicheskie modeli, Uchebnoe posobie, Akademiya, M., 2018, 240 pp.

[8] K. A. Rybnikov, Istoriya matematiki: Podistsiplinarnoe izlozhenie: Geometriya. Algebra i teoriya chisel. Matematicheskii analiz. Teoriya veroyatnostei i matematicheskaya statistika. Diskretnaya matematika, Lenand, M., 2018, 536 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2240536'>2240536</ext-link>