Architectural mathematics, the golden ratio and Fibonacci numbers
Matematičeskoe obrazovanie, Tome 112 (2024) no. 4, pp. 37-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two geometric constructions that could lead to the introduction of the golden ratio into architecture in the IV-III millennia BC are considered. The use of approximations found at different times in the Ancient World for $\sqrt{5}$$11/5$, $9/4$, $47/21$, $38/17$, $123/55$ and $161/72$ — when determining the approximate value of the Phidias numbers, it could lead to the discovery of a series of Fibonacci numbers. Arguments and examples from the history of architecture are given in support of this hypothesis.
@article{MO_2024_112_4_a5,
     author = {A. N. Kovalev},
     title = {Architectural mathematics, the golden ratio and {Fibonacci} numbers},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {37--54},
     publisher = {mathdoc},
     volume = {112},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2024_112_4_a5/}
}
TY  - JOUR
AU  - A. N. Kovalev
TI  - Architectural mathematics, the golden ratio and Fibonacci numbers
JO  - Matematičeskoe obrazovanie
PY  - 2024
SP  - 37
EP  - 54
VL  - 112
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2024_112_4_a5/
LA  - ru
ID  - MO_2024_112_4_a5
ER  - 
%0 Journal Article
%A A. N. Kovalev
%T Architectural mathematics, the golden ratio and Fibonacci numbers
%J Matematičeskoe obrazovanie
%D 2024
%P 37-54
%V 112
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2024_112_4_a5/
%G ru
%F MO_2024_112_4_a5
A. N. Kovalev. Architectural mathematics, the golden ratio and Fibonacci numbers. Matematičeskoe obrazovanie, Tome 112 (2024) no. 4, pp. 37-54. http://geodesic.mathdoc.fr/item/MO_2024_112_4_a5/

[1] Vseobschaya istoriya arkhitektury, V 12 t., v. I, Arkhitektura drevnego mira, Izd. 2-e, ispr. i dop., Stroiizdat, M., 1970

[2] Vseobschaya istoriya arkhitektury, v 12 t., v. II, Arkhitektura antichnogo mira (Gretsiya i Rim), Izdatelstvo literatury po stroitelstvu, M., 1973

[3] V. Zamarovskii, Ikh velichestva piramidy, Nauka, M., 1981

[4] A. N. Kovalev, “Drobi dlya $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, kvazipifagorovy troiki i poyavlenie tsarskogo loktya, futa i dyuima v Egipte vremen Drevnego tsarstv”, Matematicheskoe obrazovanie, 2022, no. 102, 43–54

[5] A. N. Kovalev, “Drobi dlya $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, kvazipifagorovy troiki i poyavlenie tsarskogo loktya, futa i dyuima v Egipte vremen Drevnego tsarstv, Chast II”, Matematicheskoe obrazovanie, 2023, no. 105, 54–66

[6] A. N. Kovalev, “K rekonstruktsii trekh doricheskikh peripterov V veka do n.e.”, Voprosy vseobschei istorii arkhitektury, 2024, no. 20, 26–34

[7] A. N. Kovalev, “Arkhitekturnaya matematika i teorema Pifagora v Egipte III tysyacheletiya do n.e.”, Matematicheskoe obrazovanie, 2024, no. 110, 69–80

[8] A. V. Radzyukevich, Metodicheskie osnovy provedeniya proportsionalnogo analiza form pamyatnikov arkhitektury. Dissertatsiya na soiskanie uchenoi stepeni kandidata arkhitektury, Novosibirsk, 2004

[9] A. V. Radzyukevich, “K voprosu o nauchnom izuchenii proportsii v arkhitekture i iskusstve”, Polzunovskii vestnik, 2014, no. 1, 159–164

[10] A. V. Radzyukevich, Yu. G. Marchenko, “K voprosu o razmerakh i proportsiyakh piramidy Kheopsa”, Vestnik TGASU, 2015, no. 1, 9–22

[11] A. Yu. Chernov, Zoloto Parfenona <ext-link ext-link-type='uri' href='http://chernov-trezin.narod.ru/Parfenon-1.htm'>http://chernov-trezin.narod.ru/Parfenon-1.htm</ext-link>

[12] I. Sh. Shevelev, Printsip proportsii: O formoobrazovanii v prirode, mernoi trosti drevnego zodchego, arkhitekturnom obraze, dvoinom kvadrate i vzaimopronikayuschikh podobiyakh., Stroiizdat, M., 1986

[13] A. I. Schetnikov, “Zolotoe sechenie, kvadratnye korni i proportsii piramid v Gize”, Matematicheskoe obrazovanie, 2006, no. 3(38), 59–71

[14] A. I. Schetnikov, “Luka Pacholi i ego traktat “O bozhestvennoi proportsii”. Prilozhenie k reprintnomu izdaniyu 1509 g.”, Matematicheskoe obrazovanie, 2007, no. 1(41), 33–44

[15] A. I. Schetnikov, Razmetka stilobata Parfenona i drugikh doricheskikh khramov Attiki., Novaya shkola, Novosibirsk, 2016 <ext-link ext-link-type='uri' href='https://classics.nsu.ru/schole/assets/files/10-1-shet-2.pdf'>https://classics.nsu.ru/schole/assets/files/10-1-shet-2.pdf</ext-link>

[16] Arnheim Rudolf, The Dynamics of Architectural Forms, University of California Press, Berkeley–London, 1977, 221 pp.

[17] Brigo Roberto, “La matematica e l'architettura del Partenone”, BABESCH, 83 (2008), 99–105

[18] K. Hamilton, Mastaba 17 at Meidum, A Layman’s guide, 22 November 2017 <ext-link ext-link-type='uri' href='https://www.researchgate.net/publication/321276081'>https://www.researchgate.net/publication/321276081</ext-link>

[19] K. Hamilton, “The Pyramid of Menkaure, at Giza”, A Layman’s guide, December 2020 <ext-link ext-link-type='uri' href='https://www.academia.edu/44619064/'>https://www.academia.edu/44619064/</ext-link>

[20] V. Maragioglio, C. Rinaldi, L’architettura delle Piramidi Menfite, v. VI, Tavole, Torino, 1962

[21] Gay Robins, C. C. D Shute, “Irrational Numbers and Pyramids”, Discussions in Egyptology, 1990, no. 18, 43–53

[22] C. Rossi, Architecture and mathematics in Ancient Egypt, Cambridge University press, 2003

[23] M. S. Schneider, A Beginner's Guide to Constructing the Universe, Harper Perennial, New York, 1995

[24] T. C. Scott, P. Marketos, On the origin of the Fibonacci Sequence, MacTutor History of Mathematics, Scotland, 2014 <ext-link ext-link-type='uri' href='http://www.history.mcs.st-andrews.ac.uk/Publications/fibonacci.pdf'>http://www.history.mcs.st-andrews.ac.uk/Publications/fibonacci.pdf</ext-link>

[25] “The geometry of Romanesque and Gothic cathedrals. / Ad Quadratum: The Application of Geometry to Medieval Architecture) (Book Review)”, Architectural Science Review, 46:3 (2003), 337–338 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1954607'>1954607</ext-link>

[26] D. Tsimpour$\acute{\alpha}$kec, T$\sigma \iota \mu \pi o \upsilon \rho \alpha \kappa \eta \zeta$ $\triangle$, H G$\varepsilon \omega \mu \varepsilon \tau \rho \iota \alpha$ $\kappa\alpha\iota$ $o\iota$ $\varepsilon\rho\gamma\alpha\tau\eta\zeta$ $\sigma\tau\eta\nu$ A$\rho\chi\alpha\iota\alpha$ E${\lambda\lambda\alpha\delta\alpha}$, Athens, 1985

[27] Matila C. Ghyka, Le Nombre d’Or — Rites et rythmes Pythagoriciens dans le developpement de la civilisation occidentalé., Gallimard, Paris, 1931