Architectural mathematics, the golden ratio and Fibonacci numbers
Matematičeskoe obrazovanie, Tome 112 (2024) no. 4, pp. 37-54

Voir la notice de l'article provenant de la source Math-Net.Ru

Two geometric constructions that could lead to the introduction of the golden ratio into architecture in the IV-III millennia BC are considered. The use of approximations found at different times in the Ancient World for $\sqrt{5}$$11/5$, $9/4$, $47/21$, $38/17$, $123/55$ and $161/72$ — when determining the approximate value of the Phidias numbers, it could lead to the discovery of a series of Fibonacci numbers. Arguments and examples from the history of architecture are given in support of this hypothesis.
@article{MO_2024_112_4_a5,
     author = {A. N. Kovalev},
     title = {Architectural mathematics, the golden ratio and {Fibonacci} numbers},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {37--54},
     publisher = {mathdoc},
     volume = {112},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2024_112_4_a5/}
}
TY  - JOUR
AU  - A. N. Kovalev
TI  - Architectural mathematics, the golden ratio and Fibonacci numbers
JO  - Matematičeskoe obrazovanie
PY  - 2024
SP  - 37
EP  - 54
VL  - 112
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2024_112_4_a5/
LA  - ru
ID  - MO_2024_112_4_a5
ER  - 
%0 Journal Article
%A A. N. Kovalev
%T Architectural mathematics, the golden ratio and Fibonacci numbers
%J Matematičeskoe obrazovanie
%D 2024
%P 37-54
%V 112
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2024_112_4_a5/
%G ru
%F MO_2024_112_4_a5
A. N. Kovalev. Architectural mathematics, the golden ratio and Fibonacci numbers. Matematičeskoe obrazovanie, Tome 112 (2024) no. 4, pp. 37-54. http://geodesic.mathdoc.fr/item/MO_2024_112_4_a5/