Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MO_2024_112_4_a5, author = {A. N. Kovalev}, title = {Architectural mathematics, the golden ratio and {Fibonacci} numbers}, journal = {Matemati\v{c}eskoe obrazovanie}, pages = {37--54}, publisher = {mathdoc}, volume = {112}, number = {4}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MO_2024_112_4_a5/} }
A. N. Kovalev. Architectural mathematics, the golden ratio and Fibonacci numbers. Matematičeskoe obrazovanie, Tome 112 (2024) no. 4, pp. 37-54. http://geodesic.mathdoc.fr/item/MO_2024_112_4_a5/
[1] Vseobschaya istoriya arkhitektury, V 12 t., v. I, Arkhitektura drevnego mira, Izd. 2-e, ispr. i dop., Stroiizdat, M., 1970
[2] Vseobschaya istoriya arkhitektury, v 12 t., v. II, Arkhitektura antichnogo mira (Gretsiya i Rim), Izdatelstvo literatury po stroitelstvu, M., 1973
[3] V. Zamarovskii, Ikh velichestva piramidy, Nauka, M., 1981
[4] A. N. Kovalev, “Drobi dlya $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, kvazipifagorovy troiki i poyavlenie tsarskogo loktya, futa i dyuima v Egipte vremen Drevnego tsarstv”, Matematicheskoe obrazovanie, 2022, no. 102, 43–54
[5] A. N. Kovalev, “Drobi dlya $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, kvazipifagorovy troiki i poyavlenie tsarskogo loktya, futa i dyuima v Egipte vremen Drevnego tsarstv, Chast II”, Matematicheskoe obrazovanie, 2023, no. 105, 54–66
[6] A. N. Kovalev, “K rekonstruktsii trekh doricheskikh peripterov V veka do n.e.”, Voprosy vseobschei istorii arkhitektury, 2024, no. 20, 26–34
[7] A. N. Kovalev, “Arkhitekturnaya matematika i teorema Pifagora v Egipte III tysyacheletiya do n.e.”, Matematicheskoe obrazovanie, 2024, no. 110, 69–80
[8] A. V. Radzyukevich, Metodicheskie osnovy provedeniya proportsionalnogo analiza form pamyatnikov arkhitektury. Dissertatsiya na soiskanie uchenoi stepeni kandidata arkhitektury, Novosibirsk, 2004
[9] A. V. Radzyukevich, “K voprosu o nauchnom izuchenii proportsii v arkhitekture i iskusstve”, Polzunovskii vestnik, 2014, no. 1, 159–164
[10] A. V. Radzyukevich, Yu. G. Marchenko, “K voprosu o razmerakh i proportsiyakh piramidy Kheopsa”, Vestnik TGASU, 2015, no. 1, 9–22
[11] A. Yu. Chernov, Zoloto Parfenona <ext-link ext-link-type='uri' href='http://chernov-trezin.narod.ru/Parfenon-1.htm'>http://chernov-trezin.narod.ru/Parfenon-1.htm</ext-link>
[12] I. Sh. Shevelev, Printsip proportsii: O formoobrazovanii v prirode, mernoi trosti drevnego zodchego, arkhitekturnom obraze, dvoinom kvadrate i vzaimopronikayuschikh podobiyakh., Stroiizdat, M., 1986
[13] A. I. Schetnikov, “Zolotoe sechenie, kvadratnye korni i proportsii piramid v Gize”, Matematicheskoe obrazovanie, 2006, no. 3(38), 59–71
[14] A. I. Schetnikov, “Luka Pacholi i ego traktat “O bozhestvennoi proportsii”. Prilozhenie k reprintnomu izdaniyu 1509 g.”, Matematicheskoe obrazovanie, 2007, no. 1(41), 33–44
[15] A. I. Schetnikov, Razmetka stilobata Parfenona i drugikh doricheskikh khramov Attiki., Novaya shkola, Novosibirsk, 2016 <ext-link ext-link-type='uri' href='https://classics.nsu.ru/schole/assets/files/10-1-shet-2.pdf'>https://classics.nsu.ru/schole/assets/files/10-1-shet-2.pdf</ext-link>
[16] Arnheim Rudolf, The Dynamics of Architectural Forms, University of California Press, Berkeley–London, 1977, 221 pp.
[17] Brigo Roberto, “La matematica e l'architettura del Partenone”, BABESCH, 83 (2008), 99–105
[18] K. Hamilton, Mastaba 17 at Meidum, A Layman’s guide, 22 November 2017 <ext-link ext-link-type='uri' href='https://www.researchgate.net/publication/321276081'>https://www.researchgate.net/publication/321276081</ext-link>
[19] K. Hamilton, “The Pyramid of Menkaure, at Giza”, A Layman’s guide, December 2020 <ext-link ext-link-type='uri' href='https://www.academia.edu/44619064/'>https://www.academia.edu/44619064/</ext-link>
[20] V. Maragioglio, C. Rinaldi, L’architettura delle Piramidi Menfite, v. VI, Tavole, Torino, 1962
[21] Gay Robins, C. C. D Shute, “Irrational Numbers and Pyramids”, Discussions in Egyptology, 1990, no. 18, 43–53
[22] C. Rossi, Architecture and mathematics in Ancient Egypt, Cambridge University press, 2003
[23] M. S. Schneider, A Beginner's Guide to Constructing the Universe, Harper Perennial, New York, 1995
[24] T. C. Scott, P. Marketos, On the origin of the Fibonacci Sequence, MacTutor History of Mathematics, Scotland, 2014 <ext-link ext-link-type='uri' href='http://www.history.mcs.st-andrews.ac.uk/Publications/fibonacci.pdf'>http://www.history.mcs.st-andrews.ac.uk/Publications/fibonacci.pdf</ext-link>
[25] “The geometry of Romanesque and Gothic cathedrals. / Ad Quadratum: The Application of Geometry to Medieval Architecture) (Book Review)”, Architectural Science Review, 46:3 (2003), 337–338 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1954607'>1954607</ext-link>
[26] D. Tsimpour$\acute{\alpha}$kec, T$\sigma \iota \mu \pi o \upsilon \rho \alpha \kappa \eta \zeta$ $\triangle$, H G$\varepsilon \omega \mu \varepsilon \tau \rho \iota \alpha$ $\kappa\alpha\iota$ $o\iota$ $\varepsilon\rho\gamma\alpha\tau\eta\zeta$ $\sigma\tau\eta\nu$ A$\rho\chi\alpha\iota\alpha$ E${\lambda\lambda\alpha\delta\alpha}$, Athens, 1985
[27] Matila C. Ghyka, Le Nombre d’Or — Rites et rythmes Pythagoriciens dans le developpement de la civilisation occidentalé., Gallimard, Paris, 1931