Journey to the edge of chaos
Matematičeskoe obrazovanie, Tome 112 (2024) no. 4, pp. 26-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

For arbitrary simplices, it is shown that for a fixed volume, the maximum perimeter is achieved with sets of edges consisting of only two or three groups of edges of the same length. Analogues of the Euler and Roucher inequalities are found. The main results of the work were reported at the World Congress “Theory of Systems, Algebraic Biology, Artificial Intelligence: mathematical foundations and applications”, 23-30.06.2023 at the topological section.
@article{MO_2024_112_4_a4,
     author = {V. N. Novikov},
     title = {Journey to the edge of chaos},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {26--36},
     publisher = {mathdoc},
     volume = {112},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2024_112_4_a4/}
}
TY  - JOUR
AU  - V. N. Novikov
TI  - Journey to the edge of chaos
JO  - Matematičeskoe obrazovanie
PY  - 2024
SP  - 26
EP  - 36
VL  - 112
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2024_112_4_a4/
LA  - ru
ID  - MO_2024_112_4_a4
ER  - 
%0 Journal Article
%A V. N. Novikov
%T Journey to the edge of chaos
%J Matematičeskoe obrazovanie
%D 2024
%P 26-36
%V 112
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2024_112_4_a4/
%G ru
%F MO_2024_112_4_a4
V. N. Novikov. Journey to the edge of chaos. Matematičeskoe obrazovanie, Tome 112 (2024) no. 4, pp. 26-36. http://geodesic.mathdoc.fr/item/MO_2024_112_4_a4/

[1] V. N. Novikov, “O neravenstvakh v tetraedre”, Matematicheskoe obrazovanie, 2021, no. 2(98), 18–27

[2] R. E. Schwartz, The 5 Electron Case of Thomson's Problem, 2018, arXiv: <ext-link ext-link-type='uri' href='https://arxiv.org/abs/1001.3702v5'>1001.3702v5 [math.MG]</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3047910'>3047910</ext-link>

[3] Lajos Laszlo, On the Grace-Danielsson inequality for tetrahedra, 2018, arXiv: <ext-link ext-link-type='uri' href='https://arxiv.org/abs/1805.08435v1'>1805.08435v1 [math.MG]</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3926361'>3926361</ext-link>