On the properties of systems of differential equations and problems of optimal resource extraction
Matematičeskoe obrazovanie, Tome 111 (2024) no. 3, pp. 31-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

A classification of autonomous nonlinear systems of ordinary differential equations is proposed. The behavior of the trajectories of the systems of each class is studied and it is shown that solutions of systems of the first and second classes have the property of monotonicity of solutions with respect to the initial data. One version of the comparison theorem for these systems is given. Examples of systems of the second and third classes are considered for models of interactions of two biological species and their phase portraits are constructed. It is shown that problems of optimal extraction of a renewable resource are solved differently for systems of different classes. In particular, the question of whether it is advisable to extract one type of resource or two types is discussed.
@article{MO_2024_111_3_a4,
     author = {L. I. Rodina and A. V. Chernikova},
     title = {On the properties of systems of differential equations and problems of optimal resource extraction},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {31--45},
     publisher = {mathdoc},
     volume = {111},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2024_111_3_a4/}
}
TY  - JOUR
AU  - L. I. Rodina
AU  - A. V. Chernikova
TI  - On the properties of systems of differential equations and problems of optimal resource extraction
JO  - Matematičeskoe obrazovanie
PY  - 2024
SP  - 31
EP  - 45
VL  - 111
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2024_111_3_a4/
LA  - ru
ID  - MO_2024_111_3_a4
ER  - 
%0 Journal Article
%A L. I. Rodina
%A A. V. Chernikova
%T On the properties of systems of differential equations and problems of optimal resource extraction
%J Matematičeskoe obrazovanie
%D 2024
%P 31-45
%V 111
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2024_111_3_a4/
%G ru
%F MO_2024_111_3_a4
L. I. Rodina; A. V. Chernikova. On the properties of systems of differential equations and problems of optimal resource extraction. Matematičeskoe obrazovanie, Tome 111 (2024) no. 3, pp. 31-45. http://geodesic.mathdoc.fr/item/MO_2024_111_3_a4/

[1] Anri Puankare, Izbrannye trudy v trekh tomakh, v. I, Izd-vo «Nauka», M., 1971; т. II, 1972; т. III, 1974

[2] S. A. Chaplygin, Sobranie sochinenii, v. I, Osnovaniya novogo sposoba priblizhennogo integrirovaniya differentsialnykh uravnenii, Gostekhizdat, M., 1919; C. 348–368

[3] T. Wazewski, “Systemes des equations et des inegalites differentielles ordinaires aux deuxiemes membres monotones et leurs applications”, Annales de la Societe Polonaise de Mathematique, 23 (1950), 112–166

[4] V. V. Nemytskii, V. V. Stepanov, Kachestvennaya teoriya differentsialnykh uravnenii, Gostekhizdat, M. -L., 1947, 448 pp.

[5] A. A. Andronov, E. A. Leontovich, I. I. Gordon, A. G. Maier, Kachestvennaya teoriya dinamicheskikh sistem vtorogo poryadka, Nauka, M., 1966, 568 pp.

[6] D. Errousmit, K. Pleis, Obyknovennye differentsialnye uravneniya. Kachestvennaya teoriya s prilozheniyami, Per. s angl., Mir, M., 1986, 243 pp.

[7] F. Khartman, Obyknovennye differentsialnye uravneniya, Mir, M., 1970, 720 pp.

[8] V. I. Arnold, Obyknovennye differentsialnye uravneniya, Novoe izdanie, ispravl., MTsNMO, M., 2012, 344 pp.

[9] L. I. Rodina, “O nekotorykh klassakh sistem differentsialnykh uravnenii”, Vestnik rossiiskikh universitetov. Matematika, 2024, no. 145 (29), 77–85

[10] L. I. Rodina, M. S. Voldeab, “O svoistve monotonnosti reshenii nelineinykh sistem otnositelno nachalnykh uslovii”, Differentsialnye uravneniya, 2023, no. 8 (59), 1022–1028 <ext-link ext-link-type='doi' href='https://doi.org/10.31857/S0374064123080022'>10.31857/S0374064123080022</ext-link>

[11] D. Noutsos, M. J. Tsatsomeros, “Reachability and holdability of nonnegative states”, SIAM Journal on Matrix Analysis and Applications, 30:2 (2008), 700–712 <ext-link ext-link-type='doi' href='https://doi.org/10.1137/070693850'>10.1137/070693850</ext-link>

[12] Yu. Odum, Ekologiya: V 2-kh t. T. 2. Per. s angl., Mir, Moskva, 1986, 376 pp.

[13] G. Yu. Riznichenko, Lektsii po matematicheskim modelyam v biologii, 2-e izd. ispr. i dop., Institut kompyuternykh issledovanii, NITs «Regulyarnaya i khaoticheskaya dinamika», M. -Izhevsk, 2010, 560 pp.

[14] O. A. Kuzenkov, E. A. Ryabova, Matematicheskoe modelirovanie protsessov otbora, Izd-vo Nizhegorodskogo un-ta, Nizhnii Novgorod, 2007, 324 pp.

[15] M. S. Voldeab, L. I. Rodina, “O sposobakh dobychi biologicheskogo resursa, obespechivayuschikh maksimalnuyu srednyuyu vremennuyu vygodu”, Izvestiya vuzov. Matematika, 2022, no. 1, 12–24

[16] L. I. Rodina, A. V. Chernikova, “Problems of optimal resourse harvesting for infinite time horizon”, Journal of Mathematical Sciences, 270:4 (2023), 609–623 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10958-023-06372-7'>10.1007/s10958-023-06372-7</ext-link>

[17] M. S. Voldeab, L. I. Rodina, “O sposobakh dobychi vozobnovlyaemogo resursa iz strukturirovannoi populyatsii”, Vestnik rossiiskikh universitetov. Matematika, 2023, no. 141 (28), 26–38

[18] A. O. Belyakov, A. A. Davydov, “Optimizatsiya effektivnosti tsiklicheskogo ispolzovaniya vozobnovlyaemogo resursa”, Trudy Instituta matematiki i mekhaniki UrO RAN, 22, no. 2, 2016, 38–46

[19] L. I. Rodina, A. H. Hammadi, “Optimization problems for models of harvesting a renewable resourse”, Journal of Mathematical Sciences, 250 (2020), 113–122 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10958-020-05003-9'>10.1007/s10958-020-05003-9</ext-link>

[20] L. I. Rodina, A. V. Chernikova,, “Ob optimalnoi dobyche vozobnovlyaemogo resursa na beskonechnom promezhutke vremeni”, Trudy Instituta matematiki i mekhaniki UrO RAN, 29, no. 1, 2023, 167–179