Non-classical symmetries and reductions of algebraic equations and systems of equations
Matematičeskoe obrazovanie, Tome 110 (2024) no. 2, pp. 22-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

Non-classical symmetries and reductions of algebraic equations and systems of algebraic equations are considered. Transformations that preserve the form of some algebraic equations, as well as transformations that reduce the order of these equations, are described.
@article{MO_2024_110_2_a3,
     author = {A. D. Polyanin and I. K. Shingareva},
     title = {Non-classical symmetries and reductions of algebraic equations and systems of equations},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {22--34},
     publisher = {mathdoc},
     volume = {110},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2024_110_2_a3/}
}
TY  - JOUR
AU  - A. D. Polyanin
AU  - I. K. Shingareva
TI  - Non-classical symmetries and reductions of algebraic equations and systems of equations
JO  - Matematičeskoe obrazovanie
PY  - 2024
SP  - 22
EP  - 34
VL  - 110
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2024_110_2_a3/
LA  - ru
ID  - MO_2024_110_2_a3
ER  - 
%0 Journal Article
%A A. D. Polyanin
%A I. K. Shingareva
%T Non-classical symmetries and reductions of algebraic equations and systems of equations
%J Matematičeskoe obrazovanie
%D 2024
%P 22-34
%V 110
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2024_110_2_a3/
%G ru
%F MO_2024_110_2_a3
A. D. Polyanin; I. K. Shingareva. Non-classical symmetries and reductions of algebraic equations and systems of equations. Matematičeskoe obrazovanie, Tome 110 (2024) no. 2, pp. 22-34. http://geodesic.mathdoc.fr/item/MO_2024_110_2_a3/

[1] H. W. Turnbull, Theory of Equations, Oliver and Boyd, Edinburgh, 1947 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=222'>222</ext-link>

[2] B. L. Van der Waerden, A History of Algebra: From Al-Khwarizmi to Emmy Noether, Springer, Berlin, 1985 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=803326'>803326</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0569.01001'>0569.01001</ext-link>

[3] S. G. Gindikin, Rasskazy o fizikakh i matematikakh, 3-e izd., MTsNMO, M., 2001

[4] I. N. Bronshtein, K. A. Semendyaev, Spravochnik po matematike dlya inzhenerov i uchaschikhsya vtuzov, Nauka, M., 1980

[5] G. Korn, T. Korn, Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov, Nauka, M., 1984

[6] A. D. Polyanin, A. V. Manzhirov, Handbook of Mathematics for Engineers and Scientists, Chapman & Hall/CRC Press, Boca Raton–London, 2007 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2271585'>2271585</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1267.00006'>1267.00006</ext-link>

[7] M. D. Yacoub, G. A. Fraidenraich, “A solution to the quartic equation”, The Mathematical Gazette, 96:536 (2012), 271–275 <ext-link ext-link-type='doi' href='https://doi.org/10.1017/S002555720000454X'>10.1017/S002555720000454X</ext-link>

[8] F. T. Tehrani, G. Leversha, “A simple approach to solving cubic equations”, The Mathematical Gazette, 100:548 (2016), 225–232 <ext-link ext-link-type='doi' href='https://doi.org/10.1017/mag.2016.58'>10.1017/mag.2016.58</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3520815'>3520815</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1386.65136'>1386.65136</ext-link>

[9] M. Cháves-Pichardo, M. A. Martínez-Crus, A. Trejo-Martínez, A. B. Vega-Crus, T. Arenas-Resendis, “On the practicality of the analytical solutions for all third- and fourth-degree algebraic equations with real coefficients”, Mathematics, 11:6 (2023), 1447 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/math11061447'>10.3390/math11061447</ext-link>

[10] A. Ya. Belov, “Ob odnom sposobe reshat uravneniya chetvertoi stepeni”, Matematicheskoe obrazovanie, 2023, no. 3 (107), 24–26

[11] B. Sobirov, “Sposob resheniya uravnenii 4-i stepeni s pomoschyu simmetrii”, Matematicheskoe obrazovanie, 2023, no. 3 (107), 35–37

[12] V. M. Siadat, A. Tholen, “Omar Khayyam: Geometric Algebra and Cubic Equations”, Math Horizons, 28:1 (2021), 12–15 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/10724117.2020.1770495'>10.1080/10724117.2020.1770495</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=4145462'>4145462</ext-link>

[13] D. J. Struik (ed.), A Source Book in Mathematics: 1200–1800, Princeton University Press, Princeton, 1986 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=858706'>858706</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0657.01001'>0657.01001</ext-link>

[14] R. B. King, Beyond the Quartic Equation, Birkhäuser, Boston, 1996 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1401346'>1401346</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0905.12002'>0905.12002</ext-link>

[15] A. D. Polyanin, Handbook of Exact Solutions to Mathematical Equations, CRC Press, Boca Raton, 2024, 376 pp.

[16] V. G. Boltyanskii, N. Ya. Vilenkin, Simmetriya v algebre, 2-e izd., Nauka, M., 2002