Reflections on bending a rectangle. Special rectangle theorem
Matematičeskoe obrazovanie, Tome 110 (2024) no. 2, pp. 11-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider a rectangle with sides a, b, and arectangle is bent along a straight line passing through its center. We are interested in the question: at what angle should the bend be made so that the intersection area is the smallest?
@article{MO_2024_110_2_a1,
     author = {M. E. Gaichenkov},
     title = {Reflections on bending a rectangle. {Special} rectangle theorem},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {11--18},
     publisher = {mathdoc},
     volume = {110},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2024_110_2_a1/}
}
TY  - JOUR
AU  - M. E. Gaichenkov
TI  - Reflections on bending a rectangle. Special rectangle theorem
JO  - Matematičeskoe obrazovanie
PY  - 2024
SP  - 11
EP  - 18
VL  - 110
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2024_110_2_a1/
LA  - ru
ID  - MO_2024_110_2_a1
ER  - 
%0 Journal Article
%A M. E. Gaichenkov
%T Reflections on bending a rectangle. Special rectangle theorem
%J Matematičeskoe obrazovanie
%D 2024
%P 11-18
%V 110
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2024_110_2_a1/
%G ru
%F MO_2024_110_2_a1
M. E. Gaichenkov. Reflections on bending a rectangle. Special rectangle theorem. Matematičeskoe obrazovanie, Tome 110 (2024) no. 2, pp. 11-18. http://geodesic.mathdoc.fr/item/MO_2024_110_2_a1/