Some qualitative methods in the course of ordinary differential equations
Matematičeskoe obrazovanie, Tome 109 (2024) no. 1, pp. 22-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

Qualitative methods for studying the behavior at infinity of solutions to a fourth-order nonlinear differential equation with exponential nonlinearity are considered.
@article{MO_2024_109_1_a3,
     author = {A. V. Neklyudov},
     title = {Some qualitative methods in the course of ordinary differential equations},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {22--29},
     publisher = {mathdoc},
     volume = {109},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2024_109_1_a3/}
}
TY  - JOUR
AU  - A. V. Neklyudov
TI  - Some qualitative methods in the course of ordinary differential equations
JO  - Matematičeskoe obrazovanie
PY  - 2024
SP  - 22
EP  - 29
VL  - 109
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2024_109_1_a3/
LA  - ru
ID  - MO_2024_109_1_a3
ER  - 
%0 Journal Article
%A A. V. Neklyudov
%T Some qualitative methods in the course of ordinary differential equations
%J Matematičeskoe obrazovanie
%D 2024
%P 22-29
%V 109
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2024_109_1_a3/
%G ru
%F MO_2024_109_1_a3
A. V. Neklyudov. Some qualitative methods in the course of ordinary differential equations. Matematičeskoe obrazovanie, Tome 109 (2024) no. 1, pp. 22-29. http://geodesic.mathdoc.fr/item/MO_2024_109_1_a3/

[1] A. F. Filippov, Vvedenie v teoriyu differentsialnykh uravnenii, URSS, M., 2022

[2] R. Bellman, Teoriya ustoichivosti reshenii differentsialnykh uravneni, URSS, M., 2003

[3] E. Mitidieri, S. I. Pokhozhaev, “Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh”, Trudy Matematicheskogo instituta imeni V. A. Steklova, 234 (2001), 3–383