Directed angles and isogonality
Matematičeskoe obrazovanie, Tome 109 (2024) no. 1, pp. 2-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article continues the topic of using directed angles in the proofs of some planimetry theorems, considered by the author in previous articles. In particular, several statements related to isogonality have been proven using directed angles.
@article{MO_2024_109_1_a0,
     author = {A. N. Afanasyev},
     title = {Directed angles and isogonality},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {2--11},
     publisher = {mathdoc},
     volume = {109},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2024_109_1_a0/}
}
TY  - JOUR
AU  - A. N. Afanasyev
TI  - Directed angles and isogonality
JO  - Matematičeskoe obrazovanie
PY  - 2024
SP  - 2
EP  - 11
VL  - 109
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2024_109_1_a0/
LA  - ru
ID  - MO_2024_109_1_a0
ER  - 
%0 Journal Article
%A A. N. Afanasyev
%T Directed angles and isogonality
%J Matematičeskoe obrazovanie
%D 2024
%P 2-11
%V 109
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2024_109_1_a0/
%G ru
%F MO_2024_109_1_a0
A. N. Afanasyev. Directed angles and isogonality. Matematičeskoe obrazovanie, Tome 109 (2024) no. 1, pp. 2-11. http://geodesic.mathdoc.fr/item/MO_2024_109_1_a0/

[1] A. N. Afanasev, “Orientirovannye ugly, obobschennye pedalnye treugolniki i obobschennye pryamye Simsona”, Matematicheskoe obrazovanie, 2022, no. 4 (104), 2–10

[2] A. N. Afanasev, “Esche odno dokazatelstvo teoremy Morleya”, Matematicheskoe obrazovanie, 2023, no. 2 (106), 12–16

[3] R. A. Johnson, “Directed angles in elementary geometry”, The American Mathematical Monthly, Vol. XXIV:3 (1917), 243–264 <ext-link ext-link-type='doi' href='https://doi.org/10.2307/2974332'>10.2307/2974332</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1518734'>1518734</ext-link>

[4] S. I. Zetel, Novaya geometriya treugolnika, Gosudarstvennoe uchebno-pedagogicheskoe izdatelstvo ministerstva prosvescheniya RSFSR, M., 1962

[5] D. Prokopenko, “Izogonalnoe sopryazhenie i pedalnye treugolniki”, Kvant, 2017, no. 9, 38–44

[6] V. V. Prasolov, Tochki Brokara i izogonalnoe sopryazhenie, Izdatelstvo Moskovskogo tsentra nepreryvnogo matematicheskogo obrazovaniya, M., 2000