Phidias number as an organizing factor in complex geometric constructions
Matematičeskoe obrazovanie, Tome 108 (2023) no. 4, pp. 23-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

Constructions with the Kepler triangle, parabola and ellipses are considered, where the presence of the Phidias number is the factor that organizes and harmonizes the parts of a complex construction into a single integrity.
@article{MO_2023_108_4_a2,
     author = {A. N. Kovalev},
     title = {Phidias number as an organizing factor in complex geometric constructions},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {23--38},
     publisher = {mathdoc},
     volume = {108},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2023_108_4_a2/}
}
TY  - JOUR
AU  - A. N. Kovalev
TI  - Phidias number as an organizing factor in complex geometric constructions
JO  - Matematičeskoe obrazovanie
PY  - 2023
SP  - 23
EP  - 38
VL  - 108
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2023_108_4_a2/
LA  - ru
ID  - MO_2023_108_4_a2
ER  - 
%0 Journal Article
%A A. N. Kovalev
%T Phidias number as an organizing factor in complex geometric constructions
%J Matematičeskoe obrazovanie
%D 2023
%P 23-38
%V 108
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2023_108_4_a2/
%G ru
%F MO_2023_108_4_a2
A. N. Kovalev. Phidias number as an organizing factor in complex geometric constructions. Matematičeskoe obrazovanie, Tome 108 (2023) no. 4, pp. 23-38. http://geodesic.mathdoc.fr/item/MO_2023_108_4_a2/

[1] S. L. Vasilenko, Ot ekstremalnykh svoistv treugolnika Keplera i zolotogo konusa — k vozmozhnomu proetsirovaniyu na piramidy Drevnego Egipta, El. No 77-6567. - publ. 22827, “Akademiya Trinitarizma”, M., 16.12.2016.

[2] N. N. Vorobev, Chisla Fibonachchi, Populyarnye lektsii po matematike, 6, Nauka, M., 1978 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=836536'>836536</ext-link>

[3] I. D. Zhizhilkin, Inversiya, Izd-vo MTsNMO, M., 2009, 72 pp.

[4] A. V. Pogorelov, Geometriya, Nauka, M., 1983 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=760631'>760631</ext-link>

[5] A. I. Schetnikov, “Zolotoe sechenie, kvadratnye korni i proportsii piramid v Gize”, Matem. obr., 2006, no. 3 (38), 59–71

[6] Z. Cerin, Centres of the golden ratio Archimedean twin circles, 1991 <ext-link ext-link-type='uri' href='https://web.math.pmf.unizg.hr/~cerin/c136.pdf'>https://web.math.pmf.unizg.hr/c̃erin/c136.pdf</ext-link>

[7] K. Hofstetter, “A Simple Construction of the Golden Section”, Forum Geometricorum, 2002, no. 2, 65–66 <ext-link ext-link-type='uri' href='https://forumgeom.fau.edu/FG2002volume2/FG200208.pdf'>https://forumgeom.fau.edu/FG2002volume2/FG200208.pdf</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1907779'>1907779</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0996.51006'>0996.51006</ext-link>

[8] K. Hofstetter, “Division of a Segment in the Golden Section with Ruler and Rusty Compass”, Forum Geometricorum, 2005, no. 5, 135–136 <ext-link ext-link-type='uri' href='https://forumgeom.fau.edu/FG2005volume5/FG200518.pdf'>https://forumgeom.fau.edu/FG2005volume5/FG200518.pdf</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2195742'>2195742</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1119.51007'>1119.51007</ext-link>

[9] K. Hofstetter, “Another 5-step Division of a Segment in the Golden Section”, Forum Geometricorum, 2004, no. 4, 135–136 <ext-link ext-link-type='uri' href='https://forumgeom.fau.edu/FG2003volume3/FG200322.pdf'>https://forumgeom.fau.edu/FG2003volume3/FG200322.pdf</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2057750'>2057750</ext-link>

[10] Nguyen Ngoc Giang, Le Viet An, “Golden sections and Archimedean circles in an Arbelos”, International J. of geometry, 7:2 (2018), 25–36 <ext-link ext-link-type='uri' href='https://ijgeometry.com/wp-content/uploads/2018/10/25-36.pdf'>https://ijgeometry.com/wp-content/uploads/2018/10/25-36.pdf</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3867808'>3867808</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1424.51012'>1424.51012</ext-link>

[11] Niemeyer Jo, “A Simple Construction of the Golden Section”, Forum Geometricorum, 2011, no. 11, 53 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2877284'>2877284</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1215.51009'>1215.51009</ext-link>

[12] G. Odom, J. van de Craats, “Elementary Problem 3007”, American Math. Monthly, 1983, no. 90, 482 ; “solution”, 1986, No 93, 572 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1540239'>1540239</ext-link><ext-link ext-link-type='doi' href='https://doi.org/10.2307/2323047'>10.2307/2323047</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1540926'>1540926</ext-link>

[13] R. Penrose, “The role of aesthetics in pure and applied research”, Bulletin of the Institute of Mathematics and its Applications, 10 (1974), 266–271