A new look at an old problem
Matematičeskoe obrazovanie, Tome 108 (2023) no. 4, pp. 10-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article talks about the consequences of one simple statement on obtaining an upper bound of the number of solutions to a trigonometric equation. It turns out that its result may be the beginning of a meaningful theory.
@article{MO_2023_108_4_a1,
     author = {M. A. Gorelov},
     title = {A new look at an old problem},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {10--22},
     publisher = {mathdoc},
     volume = {108},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2023_108_4_a1/}
}
TY  - JOUR
AU  - M. A. Gorelov
TI  - A new look at an old problem
JO  - Matematičeskoe obrazovanie
PY  - 2023
SP  - 10
EP  - 22
VL  - 108
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2023_108_4_a1/
LA  - ru
ID  - MO_2023_108_4_a1
ER  - 
%0 Journal Article
%A M. A. Gorelov
%T A new look at an old problem
%J Matematičeskoe obrazovanie
%D 2023
%P 10-22
%V 108
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2023_108_4_a1/
%G ru
%F MO_2023_108_4_a1
M. A. Gorelov. A new look at an old problem. Matematičeskoe obrazovanie, Tome 108 (2023) no. 4, pp. 10-22. http://geodesic.mathdoc.fr/item/MO_2023_108_4_a1/

[1] A. G. Khovanskii, Malochleny, Fazis, M., 1996, 217 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1619432'>1619432</ext-link>

[2] G. Polia, G. Sege, Zadachi i teoremy iz analiza, v. II, Nauka, M., 1978, 431 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=519068'>519068</ext-link>

[3] M. A. Gorelov, “Pravilo Dekarta”, Kvant, 2005, no. 3, 40–43 ; 61–62

[4] M. A. Gorelov, “Neravenstva i ... parallelnyi perenos”, Kvant, 2009, no. 2, 41–45

[5] M. A. Gorelov, “O polze grafikov”, Kvant, 2010, no. 3, 44–47

[6] M. A. Gorelov, “Printsip simmetrii v zadachakh optimizatsii”, Matematicheskoe prosveschenie, 28, MTsNMO, M., 2021, 165–198

[7] V. B. Lidskii, L. V. Ovsyannikov, A. N. Tulaikov, M. I. Shabunin, Zadachi po elementarnoi matematike, Nauka, M., 1968, 416 pp.

[8] N. B. Alfutova, A. V. Ustinov, Algebra i teoriya chisel. Sbornik zadach dlya matematicheskikh shkol, MTsNMO, M., 2002, 264 pp.

[9] E. Bakaev, “Obobschenie teoremy Pompeyu”, Kvant, 2017, no. 1, 39–42