A method for solving a 4th degree equations using symmetry
Matematičeskoe obrazovanie, Tome 107 (2023) no. 3, pp. 35-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

The note outlines a method for solving a 4th degree equation by reducing it to a reciprocal one. It turns out that for this, as in the case of the classical Ferrari method, it is enough to solve an auxiliary cubic equation.
@article{MO_2023_107_3_a5,
     author = {B. Sobirov},
     title = {A method for solving a 4th degree equations using symmetry},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {35--37},
     publisher = {mathdoc},
     volume = {107},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2023_107_3_a5/}
}
TY  - JOUR
AU  - B. Sobirov
TI  - A method for solving a 4th degree equations using symmetry
JO  - Matematičeskoe obrazovanie
PY  - 2023
SP  - 35
EP  - 37
VL  - 107
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2023_107_3_a5/
LA  - ru
ID  - MO_2023_107_3_a5
ER  - 
%0 Journal Article
%A B. Sobirov
%T A method for solving a 4th degree equations using symmetry
%J Matematičeskoe obrazovanie
%D 2023
%P 35-37
%V 107
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2023_107_3_a5/
%G ru
%F MO_2023_107_3_a5
B. Sobirov. A method for solving a 4th degree equations using symmetry. Matematičeskoe obrazovanie, Tome 107 (2023) no. 3, pp. 35-37. http://geodesic.mathdoc.fr/item/MO_2023_107_3_a5/

[1] V. B. Alekseev, Teorema Abelya v zadachakh i resheniyakh, MTsNMO, M., 2001

[2] S. L. Tabachnikov, D. B. Fuks, Matematicheskii divertisment, MTsNMO, M., 2011