Application of the pedagogical values of the Russian school for the study of mathematics
Matematičeskoe obrazovanie, Tome 107 (2023) no. 3, pp. 5-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

The pedagogical values of the Russian school, formulated as principles, and ways of applying them to the study of mathematics are considered. The central, leading role of the principle of conformity to nature is analyzed.
@article{MO_2023_107_3_a1,
     author = {K. A. Lebedev},
     title = {Application of the pedagogical values of the {Russian} school for the study of mathematics},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {5--13},
     publisher = {mathdoc},
     volume = {107},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2023_107_3_a1/}
}
TY  - JOUR
AU  - K. A. Lebedev
TI  - Application of the pedagogical values of the Russian school for the study of mathematics
JO  - Matematičeskoe obrazovanie
PY  - 2023
SP  - 5
EP  - 13
VL  - 107
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2023_107_3_a1/
LA  - ru
ID  - MO_2023_107_3_a1
ER  - 
%0 Journal Article
%A K. A. Lebedev
%T Application of the pedagogical values of the Russian school for the study of mathematics
%J Matematičeskoe obrazovanie
%D 2023
%P 5-13
%V 107
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2023_107_3_a1/
%G ru
%F MO_2023_107_3_a1
K. A. Lebedev. Application of the pedagogical values of the Russian school for the study of mathematics. Matematičeskoe obrazovanie, Tome 107 (2023) no. 3, pp. 5-13. http://geodesic.mathdoc.fr/item/MO_2023_107_3_a1/

[1] I. P. Kostenko, Problema kachestva matematicheskogo obrazovaniya v svete istoricheskoi retrospektivy, RGUPS, M., 2013, 501 pp. <ext-link ext-link-type='uri' href='https://russianclassicalschool.ru/pdf/kostenko-mono.pdf?ysclid=l6goxcvmx1106000115'>https://russianclassicalschool.ru/pdf/kostenko-mono.pdf?ysclid=l6goxcvmx1106000115</ext-link>

[2] I. P. Kostenko, Reformy obrazovaniya Rossii. 1918 -2018. Idei, ideologiya, rezultaty, Izhevsk, M., 2018, 191 pp. <ext-link ext-link-type='uri' href='https://russianclassicalschool.ru/uchebnye-komplekty/monografii/product/view/75/224.html/'>https://russianclassicalschool.ru/uchebnye-komplekty/monografii/product/view/75/224.html/</ext-link>

[3] I. P. Kostenko, “Pedagogicheskie tsennosti russkoi-sovetskoi shkoly”, Matematicheskoe obrazovanie., 2022, no. 1(101), 2–6 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=4499029'>4499029</ext-link>

[4] K. K. Platonov, G. G. Golubev, Psikhologiya, Vysshaya shkola, M., 1977, 246 pp.

[5] Obschaya psikhologiya <ext-link ext-link-type='uri' href='https://zen.yandex.ru/media/id/5ceedae932677000aff81291/psihologiia-62272fd20915983d355e971d'>https://zen.yandex.ru/media/id/5ceedae932677000aff81291/psihologiia-62272fd20915983d355e971d</ext-link>

[6] Pedagogicheskaya psikhologiya <ext-link ext-link-type='uri' href='https://ru.wikipedia.org/wiki/Pedagogicheskaya_psikhologiya'>https://ru.wikipedia.org/wiki/Pedagogicheskaya_psikhologiya</ext-link>

[7] Mezhpolusharnaya asimmetriya <ext-link ext-link-type='uri' href='https://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D0%B6%D0%BF%D0%BE%D0%BB%D1%83%D1%88%D0%B0%D1%80%D0%BD%D0%B0%D1%8F_%D0%B0%D1%81%D0%B8%D0%BC%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F'>https://ru.wikipedia.org/wiki/Mezhpolusharnaya-asimmetriya</ext-link>

[8] V. F. Shatalov, Sotsvetie talantov, v. 1, GUP-TsRP, M., 2001, 380 pp.; т. 2, 2003, 352 с.

[9] K. A. Lebedev, Arkhitektura elementarnoi matematiki, KubGU, Krasnodar, 2000, 34 pp.

[10] K. A. Lebedev, Arkhitektura matematiki: topologiya, algebra i funktsionalnyi analiz, KubGU, Krasnodar, 2001, 16 pp.

[11] K. A. Lebedev, “O metodicheskikh i nauchnykh printsipakh sozdaniya shkolnogo uchebnika matematiki serii «MGU — shkole». I. Chislovye sistemy (5-6 klassy)”, Matematicheskoe obrazovanie, 2016, no. 3(79), 3–20

[12] G. G. Levitas, Tekhnologiya uchebnykh tsiklov variant realizatsii rezervov klassno-urochnoi sistemy, <ext-link ext-link-type='uri' href='https://bib.convdocs.org/v17022'>https://bib.convdocs.org/v17022</ext-link>

[13] L. P. Avakyants, S. V. Kolesnikov, A. M. Saletskii, Vvedenie v kvantovuyu fiziku. Metodika resheniya zadach, MGU, M., 2018, 400 pp.

[14] Universalnyi informatsionnyi video-spravochnik po fizike Pavla Viktora. Rishelevckii litsei, <ext-link ext-link-type='uri' href='https://www.youtube.com/channel/UCSdDqsIYf9v5UEWTNda1YBw'>https://www.youtube.com/channel/UCSdDqsIYf9v5UEWTNda1YBw</ext-link>

[15] I. F. Sharygin, A. V. Shevkin, Zadachi na smekalku, Prosveschenie, M., 2012, 94 pp.

[16] Georg Gegel, <ext-link ext-link-type='uri' href='https://bookscafe.net/author/gegel_georg-35779.html'>https://bookscafe.net/author/gegel_georg-35779.html</ext-link>

[17] F. Engels, Dialektika prirody, Politicheskaya literatura, M., 2017, 343 pp.

[18] F. Engels, Anti-Dyuring, Politicheskaya literatura, M., 2017, 462 pp.

[19] V. A. Kurinskii, Avtodidaktika, Kult. ucheb.-izd. tsentr “Avtodidakt”, M., 1994, 391 pp.

[20] I. Givental, A. Zadorozhnaya, Angliiskii s nulya dlya detei i vzroslykh, Piter, M., 2013, 350 pp.

[21] I. A. Givental, Kak eto skazat po-angliiski, Piter, M., 2016, 380 pp.

[22] Effektivnye i neeffektivnye metodiki izucheniya matematiki. Chast 1. Printsipy, <ext-link ext-link-type='uri' href='https://zen.yandex.ru/media/id/5ceedae932677000aff81291/effektivnye-i-neeffektivnye-metodikiizucheniia-matematiki-chast-1-principy-5eb8489fa19aea5aa93006a4'>https://zen.yandex.ru/media/id/5ceedae932677000aff81291/effektivnye-i-neeffektivnye-metodikiizucheniia-matematiki-chast-1-principy-5eb8489fa19aea5aa93006a4</ext-link>

[23] Effektivnye i neeffektivnye metodiki izucheniya matematiki. Chast 2. Pro elektronnyi uchebnik-spravochnik, <ext-link ext-link-type='uri' href='https://zen.yandex.ru/media/id/5ceedae932677000aff81291/effektivnye-i-neeffektivnye-metodikiizucheniia-matematiki-chast-2-pro-elektronnyi-uchebnikspravochnik-5ebe9efc0bc6f5686b2ead11'>https://zen.yandex.ru/media/id/5ceedae932677000aff81291/effektivnye-i-neeffektivnye-metodikiizucheniia-matematiki-chast-2-pro-elektronnyi-uchebnikspravochnik-5ebe9efc0bc6f5686b2ead11</ext-link>

[24] Derd Poia <ext-link ext-link-type='uri' href='https://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%B9%D0%B0,_%D0%94%D1%8C%D1%91%D1%80%D0%B4%D1%8C'>https://ru.wikipedia.org/wiki/Poia</ext-link>

[25] R. G. Khazankin, Vertikalnaya pedagogika, <ext-link ext-link-type='uri' href='https://ru.wikipedia.org/wiki/%D0%92%D0%B5%D1%80%D1%82%D0%B8%D0%BA%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D0%BF%D0%B5%D0%B4%D0%B0%D0%B3%D0%BE%D0%B3%D0%B8%D0%BA%D0%B0'>https://ru.wikipedia.org/wiki/Vertikalnaya-pedagogika</ext-link>

[26] V. I. Ryzhik, Zadacha dlya uchitelya matematiki. 7-11 klassy, Vako, M., 2017, 397 pp.

[27] L. D. Kudryavtsev, Sovremennaya matematika i ee prepodavanie, Nauka, M., 1980, 143 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1258778'>1258778</ext-link>

[28] Berkli, arkhiv matematicheskogo kruzhka, <ext-link ext-link-type='uri' href='https://mathcircle.berkeley.edu/circle-archives'>https://mathcircle.berkeley.edu/circle-archives</ext-link>

[29] Pedagogicheskie tsennosti russkoi klassicheskoi shkoly i tsifrovizatsiya obucheniya, <ext-link ext-link-type='uri' href='https://dzen.ru/media/id/5ceedae932677000aff81291/pedagogicheskie-cennosti-russkoi-shkoly-640863cec99c882aad477f85'>https://dzen.ru/media/id/5ceedae932677000aff81291/pedagogicheskie-cennosti-russkoi-shkoly-640863cec99c882aad477f85</ext-link>