The limit of a definite integral: we calculate in various ways
Matematičeskoe obrazovanie, Tome 106 (2023) no. 2, pp. 28-31

Voir la notice de l'article provenant de la source Math-Net.Ru

The presented methods for calculating the limit go back to the use of methods of integrating rational fractions, the rules for calculating limits, turning to the theorem on the passage to the limit in a double inequality, the theorem on the limit of a monotone bounded sequence etc.
@article{MO_2023_106_2_a6,
     author = {L. V. Pankratova},
     title = {The limit of a definite integral: we calculate in various ways},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {28--31},
     publisher = {mathdoc},
     volume = {106},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2023_106_2_a6/}
}
TY  - JOUR
AU  - L. V. Pankratova
TI  - The limit of a definite integral: we calculate in various ways
JO  - Matematičeskoe obrazovanie
PY  - 2023
SP  - 28
EP  - 31
VL  - 106
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2023_106_2_a6/
LA  - ru
ID  - MO_2023_106_2_a6
ER  - 
%0 Journal Article
%A L. V. Pankratova
%T The limit of a definite integral: we calculate in various ways
%J Matematičeskoe obrazovanie
%D 2023
%P 28-31
%V 106
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2023_106_2_a6/
%G ru
%F MO_2023_106_2_a6
L. V. Pankratova. The limit of a definite integral: we calculate in various ways. Matematičeskoe obrazovanie, Tome 106 (2023) no. 2, pp. 28-31. http://geodesic.mathdoc.fr/item/MO_2023_106_2_a6/