The limit of a definite integral: we calculate in various ways
Matematičeskoe obrazovanie, Tome 106 (2023) no. 2, pp. 28-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

The presented methods for calculating the limit go back to the use of methods of integrating rational fractions, the rules for calculating limits, turning to the theorem on the passage to the limit in a double inequality, the theorem on the limit of a monotone bounded sequence etc.
@article{MO_2023_106_2_a6,
     author = {L. V. Pankratova},
     title = {The limit of a definite integral: we calculate in various ways},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {28--31},
     publisher = {mathdoc},
     volume = {106},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2023_106_2_a6/}
}
TY  - JOUR
AU  - L. V. Pankratova
TI  - The limit of a definite integral: we calculate in various ways
JO  - Matematičeskoe obrazovanie
PY  - 2023
SP  - 28
EP  - 31
VL  - 106
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2023_106_2_a6/
LA  - ru
ID  - MO_2023_106_2_a6
ER  - 
%0 Journal Article
%A L. V. Pankratova
%T The limit of a definite integral: we calculate in various ways
%J Matematičeskoe obrazovanie
%D 2023
%P 28-31
%V 106
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2023_106_2_a6/
%G ru
%F MO_2023_106_2_a6
L. V. Pankratova. The limit of a definite integral: we calculate in various ways. Matematičeskoe obrazovanie, Tome 106 (2023) no. 2, pp. 28-31. http://geodesic.mathdoc.fr/item/MO_2023_106_2_a6/

[1] B. P. Demidovich, Sbornik zadach i uprazhnenii po matematicheskomu analizu: Ucheb. posobie., OOO “Izdatelstvo Astrel”: OOO “Izdatelstvo AST”, M., 2002, 558 pp.

[2] Zadachi i uprazhneniya po nachalam matematicheskogo analiza: Posobie dlya uchaschikhsya shkol i klassov s uglublennym izucheniem matematiki i dlya vneklassnykh zanyatii matematikoi / Sost. Kanin E.S., Kalinin S.I.. Pod obschei redaktsiei Kanina E.S., Kirov, 1997, 203 pp.

[3] S. I. Kalinin, L. V. Pankratova, “Neravenstva Ermita–Adamara: obrazovatelno-istoricheskii aspekt.”, Matematicheskoe obrazovanie., 2018, no. 3(87), 17–31

[4] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi., Glavnaya redaktsiya fiziko-matematicheskoi literatury izd-va “Nauka”, M., 1974, 480 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=354979'>354979</ext-link>

[5] L. V. Pankratova, “Ispolzovanie teoremy o promezhutochnoi funktsii dlya vychisleniya predelov.”, Matematicheskii vestnik pedvuzov i universitetov Volgo-Vyatskogo regiona: period. mezhvuz. sbornik nauch.-metod. rabot., 2019, no. 21, 175–180, Kirov

[6] L. V. Pankratova, “Realizatsiya vnutripredmetnykh svyazei matematicheskogo analiza pri izuchenii chislovykh ryadov.”, Advanced science., 2020, no. 4, 31–35, Kirov

[7] G. M. Fikhtengolts, Kurs differentsialnogo i integralnogo ischisleniya: v 3 t. T. 2. 8-e izd., FIZMATLIT, Laboratoriya znanii, M., 2003, 864 pp.