Another proof of Morley's theorem
Matematičeskoe obrazovanie, Tome 106 (2023) no. 2, pp. 12-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article provides a proof of Morley's Theorem based on the properties of oriented angles. At the end, two examples of quadrilaterals are given for which an analog of Morley's theorem holds.
@article{MO_2023_106_2_a2,
     author = {A. N. Afanasyev},
     title = {Another proof of {Morley's} theorem},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {12--16},
     publisher = {mathdoc},
     volume = {106},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2023_106_2_a2/}
}
TY  - JOUR
AU  - A. N. Afanasyev
TI  - Another proof of Morley's theorem
JO  - Matematičeskoe obrazovanie
PY  - 2023
SP  - 12
EP  - 16
VL  - 106
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2023_106_2_a2/
LA  - ru
ID  - MO_2023_106_2_a2
ER  - 
%0 Journal Article
%A A. N. Afanasyev
%T Another proof of Morley's theorem
%J Matematičeskoe obrazovanie
%D 2023
%P 12-16
%V 106
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2023_106_2_a2/
%G ru
%F MO_2023_106_2_a2
A. N. Afanasyev. Another proof of Morley's theorem. Matematičeskoe obrazovanie, Tome 106 (2023) no. 2, pp. 12-16. http://geodesic.mathdoc.fr/item/MO_2023_106_2_a2/

[1] S. Greittser, G. S. M. Kokseter, Novye vstrechi s geometriei., Nauka, M., 1978, 224 pp.

[2] I. Yaglom, G. Tonoyan, “Teorema Morleya”, Kvant, 1978, no. 8

[3] L. Shteingarts, “Snova o teoreme Morleya”, Kvant, 2009, no. 5

[4] Evan Chen, Euclidean Geometry in Mathematical Olympiads., The Mathematical Association of America, 2016 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3467691'>3467691</ext-link>