Los caprichos diferenciales. A series of plots about differential equations
Matematičeskoe obrazovanie, Tome 105 (2023) no. 1, pp. 32-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

Eight plots are presented related to various natural sciences, described by ordinary differential equations, a distinctive feature of which is the simplicity of the mathematical apparatus necessary for the study. The author hopes that they can be used when reading the course of differential equations and help make it more interesting and meaningful.
@article{MO_2023_105_1_a4,
     author = {A. O. Remizov},
     title = {Los caprichos diferenciales. {A} series of plots about differential equations},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {32--47},
     publisher = {mathdoc},
     volume = {105},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2023_105_1_a4/}
}
TY  - JOUR
AU  - A. O. Remizov
TI  - Los caprichos diferenciales. A series of plots about differential equations
JO  - Matematičeskoe obrazovanie
PY  - 2023
SP  - 32
EP  - 47
VL  - 105
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2023_105_1_a4/
LA  - ru
ID  - MO_2023_105_1_a4
ER  - 
%0 Journal Article
%A A. O. Remizov
%T Los caprichos diferenciales. A series of plots about differential equations
%J Matematičeskoe obrazovanie
%D 2023
%P 32-47
%V 105
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2023_105_1_a4/
%G ru
%F MO_2023_105_1_a4
A. O. Remizov. Los caprichos diferenciales. A series of plots about differential equations. Matematičeskoe obrazovanie, Tome 105 (2023) no. 1, pp. 32-47. http://geodesic.mathdoc.fr/item/MO_2023_105_1_a4/

[1] V. I. Arnold, Obyknovennye differentsialnye uravneniya, Nauka, Moskva, 1971

[2] V. I. Arnold, Gyuigens i Barrou, Nyuton i Guk, Nauka, Moskva, 1989 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1008242'>1008242</ext-link>

[3] D. V. Anosov, Differentsialnye uravneniya: to reshaem, to risuem, MTsNMO, M., 2008

[4] L. S. Pontryagin, Obyknovennye differentsialnye uravneniya, Nauka, M., 1974

[5] Yu. S. Ilyashenko, “Attraktory dinamicheskikh sistem i filosofiya obschego polozheniya”, Mat. prosv., ser. 3, 12 (2008), 13–22

[6] E. F. Mischenko, A. S. Mischenko, M. I. Zelikin, “Adekvatnost matematicheskikh modelei v teorii upravleniya, fizike i ekologii”, Mat. obr., 2019, no. 4(92), 2–162

[7] V. A. Zorich, Matematicheskii analiz, Nauka, M., 1981

[8] L. A. Lyusternik, Kratchaishie linii. Variatsionnye zadachi, Gostekhizdat, M., 1955

[9] V. Yu. Bodryakov, A. A. Bykov, “Istoriya giperbolicheskikh funktsii: ikh izuchenie i nekotorye prilozheniya”, Matem. obr., 2018, no. 4(88), 18–29

[10] D. R. Merkin, Vvedenie v mekhaniku gibkoi niti, Nauka, Moskva, 1980 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=605101'>605101</ext-link>