Problem parametrization for a continuous 2D random variable using Moodle
Matematičeskoe obrazovanie, Tome 105 (2023) no. 1, pp. 26-31

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the parametrization of the problem of a 2D continuous random variable. The case is taken when the density function is distributed uniformly in the region, a right-angled triangle, and is equal to zero in the rest of the plane.
@article{MO_2023_105_1_a3,
     author = {B. A. Voronin and S. S. Voronina},
     title = {Problem parametrization for a continuous {2D} random variable using {Moodle}},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {26--31},
     publisher = {mathdoc},
     volume = {105},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2023_105_1_a3/}
}
TY  - JOUR
AU  - B. A. Voronin
AU  - S. S. Voronina
TI  - Problem parametrization for a continuous 2D random variable using Moodle
JO  - Matematičeskoe obrazovanie
PY  - 2023
SP  - 26
EP  - 31
VL  - 105
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2023_105_1_a3/
LA  - ru
ID  - MO_2023_105_1_a3
ER  - 
%0 Journal Article
%A B. A. Voronin
%A S. S. Voronina
%T Problem parametrization for a continuous 2D random variable using Moodle
%J Matematičeskoe obrazovanie
%D 2023
%P 26-31
%V 105
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2023_105_1_a3/
%G ru
%F MO_2023_105_1_a3
B. A. Voronin; S. S. Voronina. Problem parametrization for a continuous 2D random variable using Moodle. Matematičeskoe obrazovanie, Tome 105 (2023) no. 1, pp. 26-31. http://geodesic.mathdoc.fr/item/MO_2023_105_1_a3/