Remarkable triangles. Finished
Matematičeskoe obrazovanie, Tome 105 (2023) no. 1, pp. 7-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

Four types of triangles are considered, in which the base is the average (arithmetic, geometric, harmonic, quadratic) of the sides. Some new properties of these triangles are described. The second part of the article contains three paragraphs: 1) construction of wonderful triangles with a compass and ruler; 2) description of right-angled remarkable triangles; 3) description of integer remarkable triangles (in this paper they are called Diophantine).
@article{MO_2023_105_1_a1,
     author = {S. I. Kublanovskii and S. G. Bershadskiy},
     title = {Remarkable triangles. {Finished}},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {7--21},
     publisher = {mathdoc},
     volume = {105},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2023_105_1_a1/}
}
TY  - JOUR
AU  - S. I. Kublanovskii
AU  - S. G. Bershadskiy
TI  - Remarkable triangles. Finished
JO  - Matematičeskoe obrazovanie
PY  - 2023
SP  - 7
EP  - 21
VL  - 105
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2023_105_1_a1/
LA  - ru
ID  - MO_2023_105_1_a1
ER  - 
%0 Journal Article
%A S. I. Kublanovskii
%A S. G. Bershadskiy
%T Remarkable triangles. Finished
%J Matematičeskoe obrazovanie
%D 2023
%P 7-21
%V 105
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2023_105_1_a1/
%G ru
%F MO_2023_105_1_a1
S. I. Kublanovskii; S. G. Bershadskiy. Remarkable triangles. Finished. Matematičeskoe obrazovanie, Tome 105 (2023) no. 1, pp. 7-21. http://geodesic.mathdoc.fr/item/MO_2023_105_1_a1/

[1] I. Zetel, “Svoistva treugolnika, storony kotorogo sostavlyayut arifmeticheskuyu progressiyu. Sbornik statei po elementarnoi i nachalam vysshei matematiki”, Matematicheskoe prosveschenie, ser.1:5 (1936), 12–21

[2] I. Kushnir, “Klassicheskie srednie v treugolnike”, Kvant, 2013, no. 2, 32–33

[3] A. Blinkov, Klassicheskie srednie v arifmetike i geometrii, MTsNMO, M., 2012

[4] S. Kublanovskii, Evklidova geometriya v zadachakh i uprazhneniyakh, SPb, 2021 (v pechati)