Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MO_2022_104_4_a5, author = {S. V. Shvedenko}, title = {Flow of a vector field through a smooth surface and its representation by a surface integral of the 2nd kind}, journal = {Matemati\v{c}eskoe obrazovanie}, pages = {39--46}, publisher = {mathdoc}, volume = {104}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MO_2022_104_4_a5/} }
TY - JOUR AU - S. V. Shvedenko TI - Flow of a vector field through a smooth surface and its representation by a surface integral of the 2nd kind JO - Matematičeskoe obrazovanie PY - 2022 SP - 39 EP - 46 VL - 104 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MO_2022_104_4_a5/ LA - ru ID - MO_2022_104_4_a5 ER -
S. V. Shvedenko. Flow of a vector field through a smooth surface and its representation by a surface integral of the 2nd kind. Matematičeskoe obrazovanie, Tome 104 (2022) no. 4, pp. 39-46. http://geodesic.mathdoc.fr/item/MO_2022_104_4_a5/
[1] G. M. Fikhtengolts, Kurs differentsialnogo i integralnogo ischisleniya, v. III, Nauka, M., 1966
[2] S. V. Shvedenko, “Prostoi vyvod formuly ploschadi gladkoi poverkhnosti”, Matematicheskoe obrazovanie, 2021, no. 4 (100), 96–98