Flow of a vector field through a smooth surface and its representation by a surface integral of the 2nd kind
Matematičeskoe obrazovanie, Tome 104 (2022) no. 4, pp. 39-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article proposes a refinement of the requirements for the parametrization of a smooth two-dimensional surface in three-dimensional space, so that it would be possible to correctly determine the flow of a vector field through the surface.
@article{MO_2022_104_4_a5,
     author = {S. V. Shvedenko},
     title = {Flow of a vector field through a smooth surface and its representation by a surface integral of the 2nd kind},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {39--46},
     publisher = {mathdoc},
     volume = {104},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2022_104_4_a5/}
}
TY  - JOUR
AU  - S. V. Shvedenko
TI  - Flow of a vector field through a smooth surface and its representation by a surface integral of the 2nd kind
JO  - Matematičeskoe obrazovanie
PY  - 2022
SP  - 39
EP  - 46
VL  - 104
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2022_104_4_a5/
LA  - ru
ID  - MO_2022_104_4_a5
ER  - 
%0 Journal Article
%A S. V. Shvedenko
%T Flow of a vector field through a smooth surface and its representation by a surface integral of the 2nd kind
%J Matematičeskoe obrazovanie
%D 2022
%P 39-46
%V 104
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2022_104_4_a5/
%G ru
%F MO_2022_104_4_a5
S. V. Shvedenko. Flow of a vector field through a smooth surface and its representation by a surface integral of the 2nd kind. Matematičeskoe obrazovanie, Tome 104 (2022) no. 4, pp. 39-46. http://geodesic.mathdoc.fr/item/MO_2022_104_4_a5/

[1] G. M. Fikhtengolts, Kurs differentsialnogo i integralnogo ischisleniya, v. III, Nauka, M., 1966

[2] S. V. Shvedenko, “Prostoi vyvod formuly ploschadi gladkoi poverkhnosti”, Matematicheskoe obrazovanie, 2021, no. 4 (100), 96–98