So Far, the ``Indefinite Integral''
Matematičeskoe obrazovanie, Tome 104 (2022) no. 4, pp. 28-38

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper discusses the mathematical and methodological problems associated with the concept of “indefinite integral” (antiderivative). The importance of including the interval on which the indefinite integral should be calculated in its designation or, at least, in the formulation of tasks for its calculation is substantiated. In the latter, it is also useful to indicate the class of functions to which the antiderivative should belong. This will ensure the uniqueness (up to a constant) of the calculation of antiderivatives.
@article{MO_2022_104_4_a4,
     author = {E. M. Vorobiev},
     title = {So {Far,} the {``Indefinite} {Integral''}},
     journal = {Matemati\v{c}eskoe obrazovanie},
     pages = {28--38},
     publisher = {mathdoc},
     volume = {104},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MO_2022_104_4_a4/}
}
TY  - JOUR
AU  - E. M. Vorobiev
TI  - So Far, the ``Indefinite Integral''
JO  - Matematičeskoe obrazovanie
PY  - 2022
SP  - 28
EP  - 38
VL  - 104
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MO_2022_104_4_a4/
LA  - ru
ID  - MO_2022_104_4_a4
ER  - 
%0 Journal Article
%A E. M. Vorobiev
%T So Far, the ``Indefinite Integral''
%J Matematičeskoe obrazovanie
%D 2022
%P 28-38
%V 104
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MO_2022_104_4_a4/
%G ru
%F MO_2022_104_4_a4
E. M. Vorobiev. So Far, the ``Indefinite Integral''. Matematičeskoe obrazovanie, Tome 104 (2022) no. 4, pp. 28-38. http://geodesic.mathdoc.fr/item/MO_2022_104_4_a4/