So Far, the ``Indefinite Integral''
Matematičeskoe obrazovanie, Tome 104 (2022) no. 4, pp. 28-38
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper discusses the mathematical and methodological problems associated with the concept of “indefinite integral” (antiderivative). The importance of including the interval on which the indefinite integral should be calculated in its designation or, at least, in the formulation of tasks for its calculation is substantiated. In the latter, it is also useful to indicate the class of functions to which the antiderivative should belong. This will ensure the uniqueness (up to a constant) of the calculation of antiderivatives.
@article{MO_2022_104_4_a4,
author = {E. M. Vorobiev},
title = {So {Far,} the {``Indefinite} {Integral''}},
journal = {Matemati\v{c}eskoe obrazovanie},
pages = {28--38},
publisher = {mathdoc},
volume = {104},
number = {4},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MO_2022_104_4_a4/}
}
E. M. Vorobiev. So Far, the ``Indefinite Integral''. Matematičeskoe obrazovanie, Tome 104 (2022) no. 4, pp. 28-38. http://geodesic.mathdoc.fr/item/MO_2022_104_4_a4/